贪心算法在找零问题中的应用

2024-04-23 06:36

本文主要是介绍贪心算法在找零问题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

贪心算法在找零问题中的应用

  • 引言
  • a. 贪心算法求解找零问题
    • 算法设计
    • 算法证明
  • b. 硬币面额为c的幂时的贪心算法证明
    • 算法设计
    • 算法证明
  • c. 设计使贪心算法失效的硬币面额组合
  • d. 通用找零算法设计
    • 算法设计
    • 算法实现(伪代码)
    • 算法实现(C代码)
  • 结论

引言

找零问题是一个经典的优化问题,其目标是用最少的硬币找零给定的金额。贪心算法是解决这类问题的一种常用方法,其核心思想是在每一步选择中都采取最好或最优(即最有利)的选择,从而希望能够导致全局的最好或最优的解。在找零问题中,贪心算法的策略通常是根据硬币面额从大到小进行选择。

本文将围绕找零问题展开,通过贪心算法设计解决方案,并证明在特定条件下贪心算法的有效性。同时,也将探讨贪心算法失效的情况,并设计一种通用的找零算法。

在这里插入图片描述

a. 贪心算法求解找零问题

算法设计

假设我们有25美分、10美分、5美分和1美分四种面额的硬币。贪心算法的策略是尽可能多地使用面额较大的硬币,以减少硬币的总数。

  1. 初始化找零金额n
  2. 如果n大于等于25美分,则从n中减去25美分,并增加25美分硬币的数量。
  3. 如果n大于等于10美分且小于25美分,则从n中减去10美分,并增加10美分硬币的数量。
  4. 如果n大于等于5美分且小于10美分,则从n中减去5美分,并增加5美分硬币的数量。
  5. 如果n大于等于1美分且小于5美分,则从n中减去1美分,并增加1美分硬币的数量。
  6. 重复步骤2至5,直到n为0。

算法证明

要证明贪心算法在这种情况下能找到最优解,我们需要证明使用贪心策略找零所用的硬币数量是最少的。

假设存在一种更优的找零方式,它使用的硬币数量比贪心算法少。由于贪心算法总是优先使用面额较大的硬币,因此这种更优的方式必然在某个步骤中使用了比贪心算法更多的面额较小的硬币。然而,这会导致在后续步骤中可用的面额较大的硬币数量减少,从而需要更多的硬币来完成找零。这与假设更优的方式使用的硬币数量更少相矛盾。因此,贪心算法在这种情况下能找到最优解。

b. 硬币面额为c的幂时的贪心算法证明

算法设计

假设硬币面额是c的幂,即面额为C,c,…,C,c和k为整数,c>1,k≥1。在这种情况下,贪心算法依然优先使用面额较大的硬币。

算法证明

为了证明在这种情况下贪心算法总能得到最优解,我们可以使用数学归纳法。

基础情况:当k=1时,只有一种面额的硬币,贪心算法显然是最优的。

归纳假设:假设当k=m时,贪心算法是最优的。

归纳步骤:当k=m+1时,考虑使用贪心算法得到的找零方案。如果使用的最大面额的硬币数量为0,那么问题退化为k=m的情况,根据归纳假设,贪心算法是最优的。否则,如果我们使用至少一个最大面额的硬币,那么剩余的找零金额可以使用k=m的贪心算法来解决。由于归纳假设,这个子问题也是最优的。因此,当k=m+1时,贪心算法是最优的。

由数学归纳法,我们得出结论:当硬币面额为c的幂时,贪心算法总能得到最优解。

c. 设计使贪心算法失效的硬币面额组合

要使贪心算法不能保证得到最优解,我们需要设计一组特殊的硬币面额。一种常见的例子是使用1美分、3美分和4美分三种硬币。考虑找零7美分的情况,贪心算法会选择4美分和3美分,共需要两枚硬币。然而,最优解是使用两枚3美分硬币和一枚1美分硬币,共需要三枚硬币。因此,在这种情况下,贪心算法不能保证得到最优解。

d. 通用找零算法设计

算法设计

为了设计一个适用于任何k种不同面额硬币的通用找零算法,我们可以使用动态规划的方法。假设硬币面额为coins[k],找零金额为n

  1. 初始化一个大小为n+1的数组dp,其中dp[i]表示找零金额为i时所需的最少硬币数量。
  2. 对于每个金额i(从1到n),遍历所有硬币面额coins[j],如果coins[j]小于等于i,则更新dp[i]dp[i-coins[j]]+1dp[i]中的较小值。
  3. 返回dp[n]作为找零所需的最少硬币数量。

算法实现(伪代码)

function minCoins(coins, n):dp = array of size n+1 filled with ∞dp[0] = 0for i from 1 to n:for j from 0 to k-1:if coins[j] <= i:dp[i] = min(dp[i], dp[i-coins[j]] + 1)return dp[n]

算法实现(C代码)

#include <stdio.h>
#include <limits.h>int minCoins(int coins[], int k, int n) {int dp[n+1];for (int i = 0; i <= n; i++) {dp[i] = INT_MAX;}dp[0] = 0;for (int i = 1; i <= n; i++) {for (int j = 0; j < k; j++) {if (coins[j] <= i) {dp[i] = fmin(dp[i], dp[i-coins[j]] + 1);}}}return dp[n];
}int main() {int coins[] = {1, 3, 4};int k = sizeof(coins) / sizeof(coins[0]);int n = 7;printf("Minimum coins needed: %d\n", minCoins(coins, k, n));return 0;
}

结论

贪心算法在找零问题中是一种有效的策略,特别是在硬币面额为c的幂的情况下,它总能找到最优解。然而,当硬币面额不满足特定条件时,贪心算法可能会失效。为了处理更一般的情况,我们可以使用动态规划的方法设计一个通用的找零算法,该算法能够在任何硬币面额组合下找到最优解。

这篇关于贪心算法在找零问题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928038

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N