贪心算法在找零问题中的应用

2024-04-23 06:36

本文主要是介绍贪心算法在找零问题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

贪心算法在找零问题中的应用

  • 引言
  • a. 贪心算法求解找零问题
    • 算法设计
    • 算法证明
  • b. 硬币面额为c的幂时的贪心算法证明
    • 算法设计
    • 算法证明
  • c. 设计使贪心算法失效的硬币面额组合
  • d. 通用找零算法设计
    • 算法设计
    • 算法实现(伪代码)
    • 算法实现(C代码)
  • 结论

引言

找零问题是一个经典的优化问题,其目标是用最少的硬币找零给定的金额。贪心算法是解决这类问题的一种常用方法,其核心思想是在每一步选择中都采取最好或最优(即最有利)的选择,从而希望能够导致全局的最好或最优的解。在找零问题中,贪心算法的策略通常是根据硬币面额从大到小进行选择。

本文将围绕找零问题展开,通过贪心算法设计解决方案,并证明在特定条件下贪心算法的有效性。同时,也将探讨贪心算法失效的情况,并设计一种通用的找零算法。

在这里插入图片描述

a. 贪心算法求解找零问题

算法设计

假设我们有25美分、10美分、5美分和1美分四种面额的硬币。贪心算法的策略是尽可能多地使用面额较大的硬币,以减少硬币的总数。

  1. 初始化找零金额n
  2. 如果n大于等于25美分,则从n中减去25美分,并增加25美分硬币的数量。
  3. 如果n大于等于10美分且小于25美分,则从n中减去10美分,并增加10美分硬币的数量。
  4. 如果n大于等于5美分且小于10美分,则从n中减去5美分,并增加5美分硬币的数量。
  5. 如果n大于等于1美分且小于5美分,则从n中减去1美分,并增加1美分硬币的数量。
  6. 重复步骤2至5,直到n为0。

算法证明

要证明贪心算法在这种情况下能找到最优解,我们需要证明使用贪心策略找零所用的硬币数量是最少的。

假设存在一种更优的找零方式,它使用的硬币数量比贪心算法少。由于贪心算法总是优先使用面额较大的硬币,因此这种更优的方式必然在某个步骤中使用了比贪心算法更多的面额较小的硬币。然而,这会导致在后续步骤中可用的面额较大的硬币数量减少,从而需要更多的硬币来完成找零。这与假设更优的方式使用的硬币数量更少相矛盾。因此,贪心算法在这种情况下能找到最优解。

b. 硬币面额为c的幂时的贪心算法证明

算法设计

假设硬币面额是c的幂,即面额为C,c,…,C,c和k为整数,c>1,k≥1。在这种情况下,贪心算法依然优先使用面额较大的硬币。

算法证明

为了证明在这种情况下贪心算法总能得到最优解,我们可以使用数学归纳法。

基础情况:当k=1时,只有一种面额的硬币,贪心算法显然是最优的。

归纳假设:假设当k=m时,贪心算法是最优的。

归纳步骤:当k=m+1时,考虑使用贪心算法得到的找零方案。如果使用的最大面额的硬币数量为0,那么问题退化为k=m的情况,根据归纳假设,贪心算法是最优的。否则,如果我们使用至少一个最大面额的硬币,那么剩余的找零金额可以使用k=m的贪心算法来解决。由于归纳假设,这个子问题也是最优的。因此,当k=m+1时,贪心算法是最优的。

由数学归纳法,我们得出结论:当硬币面额为c的幂时,贪心算法总能得到最优解。

c. 设计使贪心算法失效的硬币面额组合

要使贪心算法不能保证得到最优解,我们需要设计一组特殊的硬币面额。一种常见的例子是使用1美分、3美分和4美分三种硬币。考虑找零7美分的情况,贪心算法会选择4美分和3美分,共需要两枚硬币。然而,最优解是使用两枚3美分硬币和一枚1美分硬币,共需要三枚硬币。因此,在这种情况下,贪心算法不能保证得到最优解。

d. 通用找零算法设计

算法设计

为了设计一个适用于任何k种不同面额硬币的通用找零算法,我们可以使用动态规划的方法。假设硬币面额为coins[k],找零金额为n

  1. 初始化一个大小为n+1的数组dp,其中dp[i]表示找零金额为i时所需的最少硬币数量。
  2. 对于每个金额i(从1到n),遍历所有硬币面额coins[j],如果coins[j]小于等于i,则更新dp[i]dp[i-coins[j]]+1dp[i]中的较小值。
  3. 返回dp[n]作为找零所需的最少硬币数量。

算法实现(伪代码)

function minCoins(coins, n):dp = array of size n+1 filled with ∞dp[0] = 0for i from 1 to n:for j from 0 to k-1:if coins[j] <= i:dp[i] = min(dp[i], dp[i-coins[j]] + 1)return dp[n]

算法实现(C代码)

#include <stdio.h>
#include <limits.h>int minCoins(int coins[], int k, int n) {int dp[n+1];for (int i = 0; i <= n; i++) {dp[i] = INT_MAX;}dp[0] = 0;for (int i = 1; i <= n; i++) {for (int j = 0; j < k; j++) {if (coins[j] <= i) {dp[i] = fmin(dp[i], dp[i-coins[j]] + 1);}}}return dp[n];
}int main() {int coins[] = {1, 3, 4};int k = sizeof(coins) / sizeof(coins[0]);int n = 7;printf("Minimum coins needed: %d\n", minCoins(coins, k, n));return 0;
}

结论

贪心算法在找零问题中是一种有效的策略,特别是在硬币面额为c的幂的情况下,它总能找到最优解。然而,当硬币面额不满足特定条件时,贪心算法可能会失效。为了处理更一般的情况,我们可以使用动态规划的方法设计一个通用的找零算法,该算法能够在任何硬币面额组合下找到最优解。

这篇关于贪心算法在找零问题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/928038

相关文章

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原