【算法刷题】手撕LRU算法(原理、图解、核心思想)

2024-04-23 05:44

本文主要是介绍【算法刷题】手撕LRU算法(原理、图解、核心思想),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

  • 1.LRU算法
    • 1.1相关概念
    • 1.2图解举例
    • 1.3基于HashMap和双向链表实现
      • 1.3.1核心思想
      • 1.3.2代码解读
      • 1.3.3全部代码

1.LRU算法

1.1相关概念

  • LRU(Least Recently Used,最近最久未使用算法):
    • 定义:根据页面调入内存后的使用情况来做决策。LRU页面置换算法选择最近最久未使用的页面予以淘汰;
    • 支持:该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问内以来锁经历的时间t;当淘汰一个页面时,选择现有页面中 t值最大的(即最近最久未使用的)页面进行淘汰
  • 两种硬件支持(选择其中一种即可):
    1. 寄存器:
      • 作用:其中包含了标记位和时间戳,标记位可以快速判断缓存块(页面)是否有效,而无需遍历整个栈来查找。时间戳可以快速记录和更新缓存块(页面)的访问时间,而不必每次访问都遍历栈来更新。
    2. 栈:
      • 作用:用于记录缓存块(页面)的访问顺序(当前使用中的各个页面的页面号)。
      • 新增页面步骤:
        • 每当进程访问某页面时,判断该页面在栈中是否存在
          • 若存在,则将该页面的页面号从栈中取出,并将该原页面号压入栈顶;
          • 若不存在,则将栈底元素移除,并将新页面号压入栈顶;
        • 因此,栈顶始终是最新被访问页面的页面号 , 栈底则是最近最久未使用页面的页面号!

1.2图解举例

  • 举例前提:假设内存只能容纳3个页大小,进程按照 5 2 1 9 2 0 2 8的次序访问页
  • 假设内存按照栈的方式来描述访问时间,并保证 栈顶始终是最新被访问页面的页面号 , 栈底则是最近最久未使用页面的页面号

image-20240419170652555

1.3基于HashMap和双向链表实现

1.3.1核心思想

  • 核心思想:使用自定义节点DLinkedNode模拟双向链表,并通过双向链表实现栈功能;

  • 使用HashMap存储以页面号为key,value存储指向双向链表节点的指针

  • 双向链表维护了页面的访问顺序,链表的头部(即栈顶)为最新访问的页面,底部为最久未使用的页面

  • put(key,value):首先在 HashMap 找到 Key 对应的节点,

    • 如果节点存在,更新节点的值,并把这个节点移动栈顶
    • 如果不存在,需要构造新的节点,并且尝试把节点塞到栈顶 ,如果LRU空间不足,则通过 tail 淘汰掉栈底的节点,同时在 HashMap 中移除 Key。

image-20240419175738628

1.3.2代码解读

  • DLinkedNode
class DLinkedNode {String key;int value;DLinkedNode pre;DLinkedNode next;
}
  • cache:使用HashTable代替HashMap,线程安全
private Hashtable<String, DLinkedNode> cache = new Hashtable<>();
  • put流程:
public void put(String key, int value) {DLinkedNode node = cache.get(key);if(node == null){DLinkedNode newNode = new DLinkedNode();newNode.key = key;newNode.value = value;this.cache.put(key, newNode);this.addNode(newNode);++count;if(count > capacity){// 淘汰栈底元素DLinkedNode tail = this.popTail();this.cache.remove(tail.key);--count;}}else{//该元素已经存在//将该元素移动到栈顶node.value = value;this.moveToHead(node);}
}
  • 移动栈中的元素到栈顶:
    • 首先先删除该节点 (解除引用)
    • 再添加该节点到栈顶
//将该节点移动到头节点
private void moveToHead(DLinkedNode node){this.removeNode(node);this.addNode(node);
}
//删除该节点(跳过该节点)
private void removeNode(DLinkedNode node){DLinkedNode pre = node.pre;DLinkedNode next = node.next;pre.next = next;next.pre = pre;
}
//添加节点到栈顶
private void addNode(DLinkedNode node){node.pre = head;node.next = head.next;head.next.pre = node;	//头部节点的上一个节点为新节点head.next = node;
}

1.3.3全部代码

class DLinkedNode {String key;int value;DLinkedNode pre;DLinkedNode next;
}public class LRUCache {private Hashtable<String, DLinkedNode> cache = new Hashtable<>();private int count;private int capacity;private DLinkedNode head, tail;public LRUCache(int capacity) {this.count = 0;this.capacity = capacity;head = new DLinkedNode();head.pre = null;tail = new DLinkedNode();tail.next = null;head.next = tail;tail.pre = head;}public void put(String key, int value) {DLinkedNode node = cache.get(key);if(node == null){DLinkedNode newNode = new DLinkedNode();newNode.key = key;newNode.value = value;this.cache.put(key, newNode);this.addNode(newNode);++count;if(count > capacity){// 淘汰栈底元素DLinkedNode tail = this.popTail();this.cache.remove(tail.key);--count;}}else{//该元素已经存在//将该元素移动到栈顶node.value = value;this.moveToHead(node);}}//添加节点private void addNode(DLinkedNode node){node.pre = head;node.next = head.next;head.next.pre = node;head.next = node;}//删除该节点(跳过该节点)private void removeNode(DLinkedNode node){DLinkedNode pre = node.pre;DLinkedNode next = node.next;pre.next = next;next.pre = pre;}//将该节点移动到头节点private void moveToHead(DLinkedNode node){this.removeNode(node);this.addNode(node);}//淘汰栈底元素private DLinkedNode popTail(){DLinkedNode res = tail.pre;this.removeNode(res);return res;}@Overridepublic String toString() {StringBuilder sbu = new StringBuilder();DLinkedNode cur = head.next;sbu.append("{");while (cur != tail) {if (cur.next != tail) {sbu.append(cur.key).append("=").append(cur.value).append(", ");} else {sbu.append(cur.key).append("=").append(cur.value);}cur = cur.next;}sbu.append("}");return sbu.toString();}public static void main(String[] args) {LRUCache lruCache = new LRUCache(3);lruCache.put("1", 5);lruCache.put("2", 2);lruCache.put("3", 1);System.out.println(lruCache);System.out.println("使用后:");lruCache.put("2",2);System.out.println(lruCache);lruCache.put("2",2);System.out.println(lruCache);lruCache.put("4", 13);System.out.println("最不常用的被删除,新元素插到头部:");System.out.println(lruCache);}}
  • 测试结果:

image-20240419181126783

在这里插入图片描述

这篇关于【算法刷题】手撕LRU算法(原理、图解、核心思想)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927934

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数