【无监督+自然语言】GPT,GPT-2,GPT-3 方法概述 (Generative Pre-Traning)

2024-04-23 05:20

本文主要是介绍【无监督+自然语言】GPT,GPT-2,GPT-3 方法概述 (Generative Pre-Traning),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要参考

【GPT,GPT-2,GPT-3 论文精读【李沐论文精读】-2022.03.04】 https://www.bilibili.com/video/BV1AF411b7xQ/
大语言模型综述: http://t.csdnimg.cn/4obR4
在这里插入图片描述

发展节点

2017.06 Transformer: 所有大语言模型LLMs的基础结构 , Attention is all you need !
2018.06 GPT: 只用Transformer解码器,只预测未来:Improving language understanding by Generative Pre-Traning
2018.10 BERT:对标GPT,编解码结构,完型填空
2019.02 GPT-2: 更大的数据集: Language Models are Unsupervised Multitast Learner
2020.05 GPT-3: 相对于GPT-2数据和模型都大了100倍 (极少数公司能做)
GPT-3:Language models are few-shot learners

一、GPT-1: 使用大量没有标记文本无监督训练 (Generative Pre-Traning )

论文:利用生成式预训练来提高自然语言理解
Improving language understanding by Generative Pre-Traning

二阶段训练模型:大量无标记文本 + 人工标注任务

通过在大规模无标签文本语料库上进行生成式预训练,并在每个特定任务上进行判别式微调,可以在多种自然语言理解任务上获得大幅度的提升

结构上,只用Transformer的编码器预测(预测未来)见下图左侧
损失函数上是与bert不同的
通过在大规模无标签文本语料库上进行生成式预训练,并在每个特定任务上进行判别式微调,可以在多种自然语言理解任务上获得大幅度的提升

结构与应用(预训练后,在有标注文本训练下流任务)

开始符号、结束符号、终止符
下图(左),表示Transformer架构和训练目标。
下图(右),表示 微调不同任务的输入转换示意。将所有结构化输入转换为由我们的预训练模型处理的标记序列,然后是线性+softmax 层。
其中,右侧绿色transformer块表示第一阶段得到的预训练模型
在这里插入图片描述

  • Extract” :指从模型的某个部分提取信息或特征的过程。模型会处理文本,提取和学习复杂的特征和模式。这个过程可以被视作是在“抽取”输入文本的语义和句法信息
  • Delim”则可能是“Delimiter”的缩写,指的是分隔符。在自然语言处理任务中,分隔符用于区分文本中的不同部分
    分隔符可以用来明确哪部分是前提(Premise),哪部分是假设(Hypothesis)。在处理输入数据时,模型会识别这些分隔符,以便正确地解析和处理各部分信息。

二、GPT-2: 语言模型是无监督的多任务学习器

论文:Language Models are Unsupervised Multitast Learner

参数15亿,Bert 1.3亿,参数相差大,但是性能差别不大, 主要创新点是zero-shot:
无监督训练后,不微调下游任务——没有任何参数或架构修改

输入更像自然语言
语言翻译:
(translate to french, english text, french text)
阅读理解
(answer the question, document, question, answer)

三、GPT-3 : 基于gpt-2,细节不明 (无监督训练,不需要参数更新就能学会各种任务)

20.05.Language models are few-shot learners

不用再进行模型参数更新,就能直接适应下游任务

零样本、少样本学习的关系

zero-shot:零样本:表示不训练,也不给示例,直接说一句功能(例如翻译英文到中文)
one-shot :一张范例:表示给出一个范例
few-show:给出多个范例
在这里插入图片描述

模型大小与少样本学习性能关系:少样本、零样本学习的准确率关系

实验表明:GPT3参数量扩大几百倍后,少量样本(few-shot)的学习,**准确率从20%左右到了50%**多

在这里插入图片描述

8个不同大小的模型

模型的大小、架构和学习超参数(令牌中的批量大小和学习率)。所有模型都训练了总共 300 亿个令牌。
在这里插入图片描述

用的数据集

在这里插入图片描述

附录

作者信息

GPT-1

在这里插入图片描述

GPT-2

在这里插入图片描述

GPT-3

在这里插入图片描述

这篇关于【无监督+自然语言】GPT,GPT-2,GPT-3 方法概述 (Generative Pre-Traning)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927888

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处