学习笔记Day21:转录组差异分析

2024-04-23 02:04

本文主要是介绍学习笔记Day21:转录组差异分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转录组差异分析

差异分析难点在于将数据处理成需要的格式

表达矩阵

数值型矩阵-count

行名是symbol

低表达量的基因需要过滤

分组信息

因子,对照组在level第一位

与表达矩阵的列一一对应

项目名称

字符串(不要有特殊字符)

TCGA-XXX

非TCGA数据特殊无要求

  • 拿不到count数据如何做差异分析?

    • 自行做上游分析得到count

    • tpm:取log,用limma做差异分析

    • fpkm、rpkm:转换为tpm,取log,用limma做差异分析

在这里插入图片描述

  • 不同类型转录组数据的应用

在这里插入图片描述

差异分析数据整理

差异分析的前提:count数据

项目取名字

TCGA的数据,统一叫TCGA-xxxx,非TCGA的数据随意起名,不要有特殊字符即可。

proj = "TCGA-CHOL"

表达矩阵

dat = read.table("TCGA-CHOL.htseq_counts.tsv.gz",check.names = F,row.names = 1,header = T)
range(dat)
#> [1]  0.0000 24.1811
#逆转log,发现需要逆转,才逆转
dat = as.matrix(2^dat - 1)
dat[1:4,1:4]
#>                    TCGA-ZD-A8I3-01A TCGA-W5-AA2U-11A TCGA-W5-AA30-01A
#> ENSG00000000003.13             5254             2476             5132
#> ENSG00000000005.5                 1                1                0
#> ENSG00000000419.11             1212              655             1644
#> ENSG00000000457.12              753              346             2652
#>                    TCGA-W5-AA38-01A
#> ENSG00000000003.13             8249
#> ENSG00000000005.5                 1
#> ENSG00000000419.11             1696
#> ENSG00000000457.12              519
# 深坑一个
dat[97,9]
#> [1] 876
as.character(dat[97,9]) #眼见不一定为实吧。
#> [1] "875.999999999999"# 转换为整数矩阵
exp = round(dat)
# 检查
as.character(exp[97,9])
#> [1] "876"

临床信息

clinical = read.delim("TCGA-CHOL.GDC_phenotype.tsv.gz")
clinical[1:4,1:4]
#>   submitter_id.samples age_at_initial_pathologic_diagnosis
#> 1     TCGA-ZH-A8Y2-01A                                  59
#> 2     TCGA-ZH-A8Y7-01A                                  59
#> 3     TCGA-W7-A93O-01A                                  NA
#> 4     TCGA-W7-A93O-11A                                  NA
#>   albumin_result_lower_limit albumin_result_specified_value
#> 1                         NA                             NA
#> 2                        3.5                            2.4
#> 3                         NA                             NA
#> 4                         NA                             NA

表达矩阵行名ID转换

library(tinyarray)
exp = trans_exp_new(exp)
#> Warning in AnnoProbe::annoGene(rownames(exp), ID_type = "ENSEMBL", species =
#> species): 6.54% of input IDs are fail to annotate...
exp[1:4,1:4]
#>             TCGA-ZD-A8I3-01A TCGA-W5-AA2U-11A TCGA-W5-AA30-01A TCGA-W5-AA38-01A
#> DDX11L1                    0                0                0                1
#> WASH7P                    81               10              146               55
#> MIR6859-1                  1                0               11                1
#> MIR1302-2HG                0                0                0                0

基因过滤

需要过滤一下那些在很多样本里表达量都为0或者表达量很低的基因。过滤标准不唯一。

过滤之前基因数量:

nrow(exp)
#> [1] 56514
  • 常用过滤标准1

仅去除在所有样本里表达量都为零的基因

exp1 = exp[rowSums(exp)>0,]
nrow(exp1)
#> [1] 48057
  • 常用过滤标准2

仅保留在一半以上样本里表达的基因

exp = exp[apply(exp, 1, function(x) sum(x > 0) > 0.5*ncol(exp)), ]
nrow(exp)
#> [1] 28434

分组信息获取

TCGA的数据,直接用make_tcga_group给样本分组(tumor和normal),其他地方的数据分组方式参考芯片数据pipeline/02_group_ids.R

library(tinyarray)
Group = make_tcga_group(exp)
table(Group)
#> Group
#> normal  tumor 
#>      9     36

保存数据

save(exp,Group,proj,clinical,file = paste0(proj,".Rdata"))

玩转GEO的实用工具

library(tinyarray)
get_count_txt('GSE204753')
##获得超级标准的表达矩阵!!

引用自生信技能树课程,又是爱小洁老师的一天!!

这篇关于学习笔记Day21:转录组差异分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927487

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按