代码随想录算法训练营第四十八天| 198.打家劫舍,213.打家劫舍II,337.打家劫舍III

本文主要是介绍代码随想录算法训练营第四十八天| 198.打家劫舍,213.打家劫舍II,337.打家劫舍III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

198.打家劫舍

题目链接:198.打家劫舍

代码随想录题解:​​​​​​​198.打家劫舍

视频讲解:动态规划,偷不偷这个房间呢?| LeetCode:198.打家劫舍_哔哩哔哩_bilibili

解题思路:

        这道还比较容易,设置dp[i]为偷到第i家的收益,那么,如果要偷第i家,就不偷第i-1家,收益为dp[i-2]+nums[i-1];如果不偷第i家,收益就是偷前i-1家的收益,为dp[i-1]。dp[0]设置为0,表示一家都没有,dp[1]设置为只有第一家存在的情况下的收益,初始化为nums[0]。        

class Solution {public int rob(int[] nums) {if (nums.length == 0) return 0;if (nums.length == 1) return nums[0];int[] dp = new int[nums.length + 1];dp[0] = 0;dp[1] = nums[0];for (int i = 2; i <= nums.length; i++) {dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i-1]);}return dp[nums.length];}
}

看完代码随想录之后的想法 

        基本思路是一样的,不过为了理解方便,可以保证dp的下标和nums的下标是一一对应的,即dp[0]直接初始化为nums[0]。

        因为本题dp[i]只跟dp[i-1]和dp[i-2]相关,可以优化一下空间,只保存前两个数据。

class Solution {public int rob(int[] nums) {if (nums.length == 1)  {return nums[0];}// 初始化dp数组// 优化空间 dp数组只用2格空间 只记录与当前计算相关的前两个结果int[] dp = new int[2];dp[0] = nums[0];dp[1] = Math.max(nums[0],nums[1]);int res = 0;// 遍历for (int i = 2; i < nums.length; i++) {res = Math.max((dp[0] + nums[i]) , dp[1] );dp[0] = dp[1];dp[1] = res;}// 输出结果return dp[1];}
}

遇到的困难

        无

213.打家劫舍II

题目链接:​​​​​​​213.打家劫舍II

代码随想录题解:213.打家劫舍II

视频讲解:动态规划,房间连成环了那还偷不偷呢?| LeetCode:213.打家劫舍II_哔哩哔哩_bilibili

解题思路:

        一开始想着设置一个robFirst数组,表示偷到当前家的时候第一家是否被偷,来判断最后一家是否能偷,即dp的最后一个数是否要取到nums[i],但是写起来很复杂,而且还有涉及到万一前后两家价值一样是怎么表示要不要偷第一家的情况,容易混乱,最后还是看答案了。

看完代码随想录之后的想法 

        方法很单纯,这里学习一下环形题的处理方法。

对于一个数组,成环的话主要有如下三种情况:

  • 情况一:考虑不包含首尾元素

213.打家劫舍II

  • 情况二:考虑包含首元素,不包含尾元素

213.打家劫舍II1

  • 情况三:考虑包含尾元素,不包含首元素

213.打家劫舍II2

注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。

而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了

所以对于这道题,只要分两类,就可以直接套用前一题的打家劫舍方法:求0-nums.length-2的数组中打家劫舍的最优结果,以及求1-nums.length-1数组中最优结果,就不存在环的问题了。

写的时候要注意数组始末点和遍历始末点是有关系的,不要写错。

class Solution {public int rob(int[] nums) {if (nums.length == 0) return 0;if (nums.length == 1) return nums[0];return Math.max(robRange(nums, 0, nums.length-2), robRange(nums, 1, nums.length-1));}public int robRange(int[] nums, int start, int end) {if (end == start) return nums[start];int[] dp = new int[nums.length];dp[start] = nums[start];dp[start + 1] = Math.max(nums[start], nums[start+1]);for (int i = start + 2; i <= end; i++) {dp[i] = Math.max(dp[i-1], dp[i-2] + nums[i]);}return dp[end];}
}

遇到的困难

        结果的想法很单纯也很巧妙,写的复杂的时候就要思考一下是不是想错了。

337.打家劫舍III

题目链接:​​​​​​​337.打家劫舍III

代码随想录题解:337.打家劫舍III

视频讲解:动态规划,房间连成树了,偷不偷呢?| LeetCode:337.打家劫舍3_哔哩哔哩_bilibili

解题思路:

        总体思路是差不多的,如果偷了当前节点的,就不偷其左右子树,反之则偷左右子树,计算左右之和即可。

        方法主要采取递归的方式,可以用后序遍历,分两种情况:如果偷了当前节点,则计算三者之和:当前节点的值,其左节点的左右节点可偷最大值,其右节点的左右节点可偷最大值;如果不偷当前节点,则计算左节点可偷最大值和右节点可偷最大值之和。比较这两种情况下的最大值,返回即可。

        但是这个方法它超时了,因为这里计算了root的四个孙子(左右孩子的孩子)为头结点的子树的情况,又计算了root的左右孩子为头结点的子树的情况,计算左右孩子的时候其实又把孙子计算了一遍。于是看答案。

class Solution {public int rob(TreeNode root) {if (root == null) return 0;if (root.left == null && root.right == null)return root.val;// 偷根节点int result1 = root.val;if (root.left != null) {result1 += rob(root.left.left) + rob(root.left.right);}if (root.right != null) {result1 += rob(root.right.left) + rob(root.right.right);}// 不偷根节点int result2 = rob(root.left) + rob(root.right);int result = Math.max(result1, result2);map.put(root, result);return result;}
}

看完代码随想录之后的想法 

        随想录给出了两种解法,一种还是递归,但是优化版。它设置了一个map用于记录当前节点的值是否被统计过,如果统计了就不用重复递归计算了,直接返回就行。

class Solution {Map<TreeNode, Integer> map = new HashMap<>();public int rob(TreeNode root) {if (root == null) return 0;if (root.left == null && root.right == null)return root.val;if (map.containsKey(root)) return map.get(root);// 偷根节点int result1 = root.val;if (root.left != null) {result1 += rob(root.left.left) + rob(root.left.right);}if (root.right != null) {result1 += rob(root.right.left) + rob(root.right.right);}// 不偷根节点int result2 = rob(root.left) + rob(root.right);int result = Math.max(result1, result2);map.put(root, result);return result;}
}

        另一种则是用动态规划来做,每个节点都用一个大小为2的数组,分别记录不偷该节点和偷该节点可获得的最大值,利用递归时候的栈来依次记录每个节点的dp。递归函数首先计算当前节点左节点和右节点的dp,如果不偷root,其dp[0]为二者之和:偷左节点resultLeft[1]与不偷左节点resultLeft[0]的最大值,偷右节点resultRight[1]与不偷右节点resultRight[0]的最大值;如果偷root,其dp[1]为不偷左节点resultLeft[0]和不偷右节点resultRight[0]的二者之和。

class Solution {public int rob(TreeNode root) {int[] resultRoot = robTree(root);return Math.max(resultRoot[0], resultRoot[1]);}public int[] robTree(TreeNode root) {if (root == null) return new int[]{0,0};int[] resultNode = new int[2];int[] resultLeft = robTree(root.left);int[] resultRight = robTree(root.right);// 偷rootresultNode[1] = root.val + resultLeft[0] + resultRight[0];// 不偷rootresultNode[0] = Math.max(resultLeft[0], resultLeft[1]) + Math.max(resultRight[0], resultRight[1]);return resultNode;}
}

遇到的困难

        超时的时候要思考一下超时的根本原因,然后看看是否能够剪枝去掉重复计算。树也可以用map来用空间换时间,学到了。

        还有就是树也是可以用dp的,不过这里的dp不用一次性记录每一个节点的结果,相当于是滚动更新了,对于二叉树而言,也只有这样的更新方法。

今日收获

        学习了一下不同限制条件下dp的计算方式,都很巧妙,好难想,努力记住。

这篇关于代码随想录算法训练营第四十八天| 198.打家劫舍,213.打家劫舍II,337.打家劫舍III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927216

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据