数据洞察创新挑战赛之智能运维赛参赛攻略--皮卡丘的皮卡

本文主要是介绍数据洞察创新挑战赛之智能运维赛参赛攻略--皮卡丘的皮卡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关联比赛:  数据洞察创新挑战赛之智能运维赛

背景和参赛动机

1.个人背景和专业领域

四川大学本科,中南大学研究生,专业是医学图像处理。目前就职于深信服,主要做云安全相关的业务开发工作。

2.何时开始关注和参与数据科学竞赛?

2022年就在关注和简单参与天池竞赛,一开始只是为了一些T恤之类的小礼品。年底拿了一次奖,就慢慢打专门花时间来参加天池的比赛了。

3.参加数据洞察创新挑战赛的初衷和动机是什么?

运维赛和目前工作比较相关,算是对成绩比较了解,也很感兴趣,想尝试一下。

项目选择和团队组建

4.在数据洞察创新挑战赛中选择的项目是什么?

两个赛道都参与了

5.是单独参赛还是组队参赛?如果组队,如何组建团队?

组队参赛,但是基本都是一个人在打,组建团队也是帮朋友拿一下奖励和团队线下旅游机会。

6.是如何确定参赛项目和团队成员的?

有固定的队友,一般都是加同事和表弟。

参赛过程和挑战

7.对参赛过程的描述,包括数据集的理解、特征工程、模型选择等步骤

基于赛题给出的微服务trace,metric等数据,找出导致高响应时间trace迟(超过slo阈值)出现的span列表。

  • trace: 一个(对外)接口的完整链路。(A,B,C,D,E组成一个trace)
  • span: 链路中每一次微服务接口调用的不同阶段,是一个span。(如由A发起调用到B,会产生一个client span。到达B上运行时,会产生一个server span)
  • slo阈值:微服务服务质量的属性,通常会带一个百分位和一个延迟,如95分位[200ms],就是微服务95%的请求响应时间需要小于200毫秒。题目给出的slous位于94分~95分位间。

enter image description here

span分为四类:

  • client: 客户端,记录一次调用从客户端发起到返回客户端
  • server: 服务端,记录一次调用从到达服务端到离开服务端(粉红色)一般来说,server的父span是一个client,同时可能包含多个子client类型span。正常情况下server的时间区间在它父span之内。
  • producer: 生产者,类似客户端,通常往消息队列写入消息。
  • consumer: 消费者,类似服务端,异步消费,时间可能和producer相隔很远。

独占时间:span是trace的主要组成部分,所以挖掘span的特征是重点。由于span的响应/延迟是受它子span影响的,排除子span影响的独占时间才能反映这个span的耗时。不通类型的span,独占时间含义也不同:

  • client:接口网络侧的延迟。一般来说client时间减去子span的时间,就是client的独占时间。
  • server:接口在服务端实际运行的时间。由于server可能存在多个子span,所以需要先把子span合并区间,再计算总时间,最终用server span的时间减去子span的总时间,得到独占时间。

独占时间算是一个最显著的特征,每个trace只选择真实时间最大的span,都能拿到一半以上(1900+)的分数。

其他特征:

由于存在错误的span和异步span,为span定义is_error和is_consumer属性

  • is_error:如果当前span的上位节点中存在error的span,则自身也属于error,is_error标记为1
  • is_consumer:如果当前span的上位节点中存在consumer类型的span,则自身也属于consumer,is_consumer标记为1

延迟相关特征

  • 90~95分位的独占延迟。
  • 90~95分位延迟均值,标准差

metric特征

  • pod当前cpu占用
  • pod当前内存占用
  • pod分配的cpu限制
  • pod分配的内存限制

为了能直接根据输入数据得出结果,需要设计两个算法:

  • span排序算法,排在前面的越有可能成为根因,选择根因时必然是依次往下选
  • span阈值算法,针对不通path接口,计算出合理的阈值,大于阈值的所有span为根因结果。

排序算法:
排序算法只需要简单对各个span的特征进行加权求和作为

  • span的评分,并按大小排列即可,用到的特征包括:
  • span独占时间
  • span独占时间90-95延迟
  • span运行时间90-95延迟
  • 90~95分位延迟均值,标准差
  • span运行时间中点对应的pod的cpu、内存消耗
  • is_error,is_consumer

由于没有想到好的训练方法,只是手动修改权重提交测试。最终结果其实只使用了(真实时间 - 94延迟)作为了排序评分。

阈值算法:
当一个span恢复正常运行(真实运行时间变成95分位的均值延迟),trace的整体响应时间也会减少。重复操作,当减少到SLOus一定倍率(1.5倍)时,就认为达到阈值,之前的span集合就是根因列表。

这里需要设计一个trace时间修正算法,当一个span恢复后,其后续的span的起始时间都可能被修改,顺序位:

  • 子孙修正:优先修改子孙的span起始时间,需要根据每个阶段等比减少的时间对应调整时间。
  • 兄弟修正:位于后面的兄弟节点,简单整体前移即可。
  • 长辈修正:最后修正长辈以及后续节点,简单整体前移即可。

    enter image description here

并发运行

由于所有特征都是提前提取的,需要统计的数据都可以对每个PATH接口处理处理。
最终计算根因时,每个trace计算相互独立,无需上下文支持,可以直接并行计算。

总结
运维赛的赛题门槛较高,前期能出高分的队没几个。我对微服务相关的知识有过了解,理解了独占时间后,分数基本都是前几,结合span延迟信息,最终取得了不错的结果。

8.参赛过程中遇到的最大挑战是什么?是如何克服的?

方案的可解释下不强,有时候尝试出一些答案,但是很难解释为什么这些span是异常的。最终并没有克服问题,只是在尝试找规律。

9.选手有没有遇到比较棘手的问题?如何解决的?

过程中成绩一直无法提高,稳定在1850左右,后来发现是因为提前把consumer类型的span以及其后代都筛除了。筛除的原因是我认为这些数据无法影响主接口的调用。
后来在写代码注释的时候才发现这个问题,放开这部分span后才有了最终的成绩。

成果和展望

10.在数据洞察创新挑战赛中取得了怎样的成绩?

答:取得了不错的成绩,运维赛的一等奖,主要还是占了初赛的便宜,都没想到初赛会有30%的分数。

11.对自己的表现和成果是否满意?

答:对表现和结果都很满意。

12.对未来参加数据科学竞赛有什么打算和展望?

答:希望下次比赛可以给出更详细的背景介绍与赛题分析,方便其他队伍参与进来。

总结

13.参加数据洞察创新挑战赛的故事和经验分享

从6月到10月底,这个比赛跨度很长。运维赛复赛长时间没有进展,都有点放弃了,在最后一天查看代码时候发现了一些小问题,把成绩提高上来了,也算是对我认真写注释的回报。最后占了初赛30%的便宜拿了第一,运气和结果都很好。

14.对其他有意参加下一届数据洞察创新挑战赛的人的建议和鼓励

答:搏一搏,说不定就拿奖了。

查看更多内容,欢迎访问天池技术圈官方地址:数据洞察创新挑战赛之智能运维赛参赛攻略--皮卡丘的皮卡_天池技术圈-阿里云天池

这篇关于数据洞察创新挑战赛之智能运维赛参赛攻略--皮卡丘的皮卡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926529

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒