使用SFT和VLLM微调和部署Llama3-8b模型

2024-04-22 16:44

本文主要是介绍使用SFT和VLLM微调和部署Llama3-8b模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 环境安装
  • 2. accelerator准备
  • 3. 加载llama3和数据
  • 4. 训练参数配置
  • 5. 微调
  • 6. vllm部署
  • 7. Llama-3-8b-instruct的使用
  • 参考

1. 环境安装

pip install -q -U bitsandbytes
pip install -q -U git+https://github.com/huggingface/transformers.git
pip install -q -U git+https://github.com/huggingface/peft.git
pip install -q -U git+https://github.com/huggingface/accelerate.git
pip install trl

2. accelerator准备

import os
import torch
from datasets import load_dataset
from transformers import (AutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfig,HfArgumentParser,TrainingArguments,pipeline,logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfigfsdp_plugin = FullyShardedDataParallelPlugin(state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)accelerator = Accelerator(fsdp_plugin=fsdp_plugin)

3. 加载llama3和数据

因为使用的是base模型,所以没有一个严格的提示模板需要遵循。使用的数据集遵循LLama3的模板格式,因此对于使用Llama3聊天格式的下游任务来说应该没问题。如果你使用自己的数据,你可以自定义格式,在下游任务中也使用相同的格式即可。

base_model_id = "meta-llama/Meta-Llama-3-8B"
dataset_name = "scooterman/guanaco-llama3-1k"
new_model = "llama3-8b-SFT"from datasets import load_dataset
dataset = load_dataset(dataset_name, split="train")import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfigmodel = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(base_model_id,add_eos_token=True,add_bos_token=True, 
)
tokenizer.pad_token = tokenizer.eos_token

4. 训练参数配置

许多教程只是简单地粘贴一个参数列表,让读者自己去弄清楚每个参数的作用。下面我添加了注释来解释每个参数的作用!

# Output directory where the results and checkpoint are stored
output_dir = "./results"# Number of training epochs - how many times does the model see the whole dataset
num_train_epochs = 1 #Increase this for a larger finetune# Enable fp16/bf16 training. This is the type of each weight. Since we are on an A100
# we can set bf16 to true because it can handle that type of computation
bf16 = True# Batch size is the number of training examples used to train a single forward and backward pass. 
per_device_train_batch_size = 4# Gradients are accumulated over multiple mini-batches before updating the model weights. 
# This allows for effectively training with a larger batch size on hardware with limited memory
gradient_accumulation_steps = 2# memory optimization technique that reduces RAM usage during training by intermittently storing 
# intermediate activations instead of retaining them throughout the entire forward pass, trading 
# computational time for lower memory consumption.
gradient_checkpointing = True# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001# Optimizer to use
optim = "paged_adamw_32bit"# Number of training steps (overrides num_train_epochs)
max_steps = 5# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True# Save checkpoint every X updates steps
save_steps = 100# Log every X updates steps
logging_steps = 5

5. 微调

建立一个wandb帐户来监控这次微调任务。

pip install wandb
import wandb
training_arguments = TrainingArguments(output_dir=output_dir,num_train_epochs=num_train_epochs,per_device_train_batch_size=per_device_train_batch_size,gradient_accumulation_steps=gradient_accumulation_steps,optim=optim,save_steps=save_steps,logging_steps=logging_steps,learning_rate=learning_rate,weight_decay=weight_decay,bf16=bf16,max_grad_norm=max_grad_norm,max_steps=max_steps,warmup_ratio=warmup_ratio,group_by_length=group_by_length,report_to="wandb"
)trainer = SFTTrainer(model=model,train_dataset=dataset,dataset_text_field="text",tokenizer=tokenizer,args=training_arguments,
)trainer.train()# Save trained model
trainer.model.save_pretrained(new_model)

6. vllm部署

为了部署这个模型以进行极快的推理,使用VLLM并托管一个OpenAI兼容端点。可能需要重新启动内核,然后运行下面的单元。

pip install vllm
python -O -u -m vllm.entrypoints.openai.api_server \--host=127.0.0.1 \--port=8000 \--model=brev-llama3-8b-SFT \--tokenizer=meta-llama/Meta-Llama-3-8B \--tensor-parallel-size=2

7. Llama-3-8b-instruct的使用

Instruct 版本对话prompt结构:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>{{ user_msg_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>{{ model_answer_1 }}<|eot_id|>

16 GB 的 RAM,包括 3090 或 4090 等消费级 GPU

import transformers
import torchmodel_id = "meta-llama/Meta-Llama-3-8B-Instruct"pipeline = transformers.pipeline("text-generation",model=model_id,model_kwargs={"torch_dtype": torch.bfloat16},device="cuda",
)messages = [{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},{"role": "user", "content": "Who are you?"},
]prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True
)terminators = [pipeline.tokenizer.eos_token_id,pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]outputs = pipeline(prompt,max_new_tokens=256,eos_token_id=terminators,do_sample=True,temperature=0.6,top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])

量化版,4 bits加载需要大约 7 GB 的内存运行

pipeline = transformers.pipeline("text-generation",model=model_id,model_kwargs={"torch_dtype": torch.float16,"quantization_config": {"load_in_4bit": True},"low_cpu_mem_usage": True,},
)

参考

  1. https://huggingface.co/blog/llama3#how-to-prompt-llama-3
  2. https://ai.meta.com/blog/meta-llama-3/
  3. https://pytorch.org/torchtune/stable/tutorials/llama3.html

这篇关于使用SFT和VLLM微调和部署Llama3-8b模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926315

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.