开源项目实现简单实用的股票回测

2024-04-22 14:52

本文主要是介绍开源项目实现简单实用的股票回测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

之前,尝试做股票工具一直想做的大而全,试图抓取长期的各个维度数据,然后统计或者训练模型。想把每个细节做到完美,结果却陷入了细节之中,最后烂尾了。

最近,听到大家分享了一些关于深度学习、时序模型、强化学习在股票预测方面的新论文。但是觉得这些理论与我们的实际操作还有很大的距离。目前好像更需要的是一些具体而实用的辅助工具。

这次,尝试用 50 行代码完成一个简单的股票回测工具。输入的数据是 A 股的股票代码和时间,通过工具抓取股票数据。然后编写了策略,并使用回测工具来展示策略在数据上的具体操作和盈亏。

具体使用场景如下:当我们想采用某种策略来操作某支股票时,可以选择想要购买的股票,或者选择与之类似的股票;然后,选择一个与当前大趋势相似的时段,用历史数据来验证这个策略是否可行,以及其可能带来的盈利效果。

你不会编写策略也没关系。这里使用的 backtrader 库自 2015 年就已经开源,相关资料丰富。一般的交易策略代码,编程机器人(如 gpt4, copilot)都能根据文字描述直接编写,只需要稍作修改即可。

2 工具介绍

这里采用了两种工具,一是用于抓取 A 股股票数据的 akshare,另一是用于回测的经典工具 backtrader。

2.1 backtrader

Backtrader 是 2015 年开源的 Python 量化回测框架。它的优点包括:资料丰富;整体结构良好,并提供许多常用的统计工具,用户可直接调用;功能相对单一,使用方法也较为简单。其缺点在于:已经停止更新很长时间,对新的库支持存在问题。我试用了其他几个开源框架,发现它们要么不够成熟,要么也已停更很久,暂时还没有找到更好的替代品。如果有朋友知道有更好的工具,希望能私信告诉我。

2.2 AkShare

仅用 210 行的 Python 代码,我们就可以实现对一段时间内日线,周线,分钟线等的抓取。这个程序的功能相当直观且简单,我们可以根据自己的需求进行修改。

2.3 具体实现

PYTHON

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import backtrader as bt
import matplotlib.pyplot as pltASHARE_PATH = '/opt/xieyan/git/Ashare/' # ashare的路径
import sys
if ASHARE_PATH not in sys.path:
sys.path.append(ASHARE_PATH)
from Ashare import *class SmaCross(bt.Strategy):params = dict(pfast=5,  # 短期均线周期pslow=10  # 长期均线周期)def __init__(self):sma1 = bt.ind.SMA(period=self.p.pfast)  # 短期均线sma2 = bt.ind.SMA(period=self.p.pslow)  # 长期均线self.crossover = bt.ind.CrossOver(sma1, sma2)  # 均线交叉信号# 这里里可以添加其他指标显示bt.indicators.MACDHisto(self.datas[0])def next(self):if not self.position:  # 还没有仓位if self.crossover > 0:  # 金叉self.buy()  # 买入print('Buying at', self.data.close[0])elif self.crossover < 0:  # 死叉self.close()  # 卖出print('Selling at', self.data.close[0])def get_dataframe():df=get_price('000538.XSHE',frequency='1d',count=60) # 以云南白药为例df.rename_axis('datetime', inplace=True)return dfif __name__ == '__main__':plt.plot([1,2,3,4])plt.show()cerebro = bt.Cerebro()cerebro.addstrategy(SmaCross)data = bt.feeds.PandasData(dataname=get_dataframe())cerebro.adddata(data)cerebro.addsizer(bt.sizers.FixedSize, stake=100) # 最小交易的单位cerebro.broker.setcash(10000.0) # 设置初始资金cerebro.broker.setcommission(commission=0.001) # 设置交易手续费print('初始金额: %.2f' % cerebro.broker.getvalue())cerebro.run()print('最终金额: %.2f' % cerebro.broker.getvalue())cerebro.plot(width=30, height=15, dpi=300, style='candlestick')

3 问题及解决

3.1 backtrader 绘图显示不出来

  • 现象:在进行绘图操作时,虽未出现错误,但在 jupyter 中无法显示图像。
  • 分析:这可能是由于 matplotlib 版本问题导致的。进一步追踪到 plot 函数内部,发现在绘图前先调用 plt 进行绘图,就可以正常显示了。
  • 解决方法:在调用 backtrader 库进行绘图前,先执行一次 plt 绘图。

PYTHON

1
2
3
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.show()

3.2 绘图时显示字体太大

  • 现象:绘图时由于字体太大,无法正常显示所有内容。
  • 分析:试图用 matplotlib plt params 设置字体大小,但不起作用;由于时间有限,就直接跟到库里,简单粗暴地修改了代码。
  • 解决方法:修改 backtrader/plot/plot.py 的 PInfo 类的 __init__ 函数,加入:

PYTHON

1
self.sch.subtxtsize = 6

4 思考

人的思考和判断是一个不断变化的过程,往往在事后回顾时,只留下些许碎片,无法完全重现当时的具体状态。此外,人对各个维度的趋势、行业前景以及政策的判断,很难直接用程序或数值来描述。因此,将策略详细地写出来,可以帮助进一步梳理和明确逻辑;这不仅可以用历史数据来验证策略的有效性,还能减少情绪的影响,进而实现实时监控和提醒。利用程序既可以节省时间,又可以监控更多情况,增加确定性,将程序的优势和人的优势结合起来。

5 相关资源

5.1 开源财经资源

  • akshare 项目地址:https://github.com/akfamily/akshare
  • akshare 教程:https://akshare.akfamily.xyz/data/stock/stock.html
  • 其它 A 股数据下载:https://github.com/gsyyysg/StockFormer
  • 其它 A 股数据下载:https://github.com/jrothschild33/learn_backtrader

5.2 backtrader

  • 项目地址:https://github.com/mementum/backtrader
  • 教程:https://github.com/jrothschild33/learn_backtrader
  • 使用示例:https://github.com/horacepei/qtbt
  • 使用说明:https://blog.csdn.net/zhouhy0903/article/details/119025551

这篇关于开源项目实现简单实用的股票回测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926084

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库