算法复杂度精讲——算法时间复杂度的数学原理:从O(n(log(n))说起

2024-04-22 13:58

本文主要是介绍算法复杂度精讲——算法时间复杂度的数学原理:从O(n(log(n))说起,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述:在设计算法的时候,要考虑两个方面,一个是算法的正确性,另外一个就是算法的效率,也就是复杂度,通常情况下,我们优先考虑的是时间复杂度,这也是本文要讨论的内容。算法学习的时候,经常碰到这样的问题,为什么快速排序的时间复杂度是O(nlog(n))?为何插入排序的时间复杂度是On^2)?这些是我们熟悉的算法时间复杂度,可能病没有太大的问题,那我们不熟悉的呢?如果我们采用三路归并排序而不是二路归并排序,时间复杂度是多少呢?一个排序算法经过某种变形以后时间复杂度又是多少呢?本文,主要从数学底层,讲述一个算法时间复杂度是如何推导的。让你真正知其所以然,而不仅仅是总是心中存有疑惑:为何快排的时间复杂度会是这么奇怪的Onlogn))


1.数学基础知识


首先,介绍以下数学基础知识,这些基本都分布在高等数学和离散数学之中,不进行数学推导。

一些不等式:

  






无论是归并还是快速排序,我们都可以把它们归结到递归/分治这一类问题的求解,他们具有一个一般性的时间复杂度表述:


这个等式的意义是:规模是n的问题可以拆分成a个规模是n/b的问题,那么它的时间复杂度就等于a个规模是n/b的问题,加上一次分解耗费的时间Dn)和一次合并耗费的时间Cn)。第二部分到第四部分将介绍三种求解这个方程式的方法。


2.递归树方法


这是一种最直观的方法,它把上述等式形象化,然后进行求解,我们通过一个例子来说明这个情况。

例子:利用递归树求解T(n)=T(n/10)+T(9n/10)+cn

划出递归树如下:



关键点:求出树的深度和每层的代价(注意,此例中因为每层的代价都相同,所以比较好求解;但在其他情况下,可能是每层代价不同,而是一个等比数列或者其他形式的数列)


1)其中,树的深度容易求解:n-->9/10n-->81/100(n)......n/n=1

也就是说,这个递归下降满足这个趋势(其中b=10/9):

于是

所以



2)第i层的代价:

每层的规模分别是1/10n9/10n,而每个节点的代价是cn/109cn/10,所以加在一块是cn


3)总代价:


所以

Tn=Onlgn


3.主方法


形如下列表达式的算法复杂度表述

Tn=aTn/b+fn)(a>=1,b>1

主方法的证明:参考算法导论第四章

最终利用等比数列的求和公式即可求解。


4.替换代换法


说明:此种方法需要凭借一定的经验,有点类似于数学归纳法,先猜测后证明。

1)步骤:猜测时间复杂度的表述形似

2)要点:猜测要准确,归纳假设要足够强,避免弱化证明。替换非多项式变量

对于边界问题:可采用移动边界和强化归纳假设的方式加以解决。


实例:

1)证明Tn=Tn/2+n的时间复杂度位Onlogn

Tn<cnlgn


说明:此种算法复杂度的计算对以分支法为基础的算法比较有效。

这篇关于算法复杂度精讲——算法时间复杂度的数学原理:从O(n(log(n))说起的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925968

相关文章

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

如何自定义一个log适配器starter

《如何自定义一个log适配器starter》:本文主要介绍如何自定义一个log适配器starter的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求Starter 项目目录结构pom.XML 配置LogInitializer实现MDCInterceptor

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

JavaScript时间戳与时间的转化常用方法

《JavaScript时间戳与时间的转化常用方法》在JavaScript中,时间戳(Timestamp)通常指Unix时间戳,即从1970年1月1日00:00:00UTC到某个时间点经过的毫秒数,下面... 目录1. 获取当前时间戳2. 时间戳 → 时间对象3. 时间戳php → 格式化字符串4. 时间字符