LeetCode题目55:跳跃游戏【python5种算法贪心/回溯/动态规划/优化贪心/索引哈希映射 详解】

本文主要是介绍LeetCode题目55:跳跃游戏【python5种算法贪心/回溯/动态规划/优化贪心/索引哈希映射 详解】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

给定一个非负整数数组 nums,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。

输入格式
  • nums:一个由非负整数构成的数组。
输出格式
  • 返回一个布尔值,表示是否能到达最后一个位置。

示例

示例 1
输入: nums = [2,3,1,1,4]
输出: true
解释: 可以先跳 1 步,从位置 0 到 1,然后从位置 1 跳 3 步到最后一个位置。
示例 2
输入: nums = [3,2,1,0,4]
输出: false
解释: 无论如何,你总会到达位置 3,但该位置的最大跳跃长度是 0,所以你永远不可能到达最后一个位置。

方法一:贪心算法

解题步骤
  1. 初始化最远距离max_reach 初始化为 0,用于记录能到达的最远位置。
  2. 遍历数组:遍历数组中的每个位置,并更新 max_reach
  3. 判断可达性:如果在某个位置 imax_reach < i,说明无法继续向前跳跃,返回 false;如果 max_reach 大于等于数组的最后一个位置,则返回 true
完整的规范代码
def canJump(nums):"""使用贪心算法判断能否跳到最后一个位置:param nums: List[int], 输入的数组:return: bool, 是否能到达最后一个位置"""max_reach, n = 0, len(nums)for i in range(n):if i > max_reach:return Falsemax_reach = max(max_reach, i + nums[i])if max_reach >= n - 1:return Truereturn False# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n)),其中 n 是数组 nums 的长度。
  • 空间复杂度:(O(1)),使用了常数额外空间。

方法二:回溯算法

解题步骤
  1. 定义回溯函数:尝试从当前位置开始,模拟所有可能的跳跃步数,向前递归探索。
  2. 递归跳跃:从当前位置起跳,逐步减小跳跃距离直到 0,递归调用自身。
  3. 终止条件:如果到达数组末尾,返回 true;如果所有跳跃尝试都失败,返回 false
完整的规范代码
def canJumpFromPosition(position, nums):if position == len(nums) - 1:return Truefurthest_jump = min(position + nums[position], len(nums) - 1)for next_position in range(position + 1, furthest_jump + 1):if canJumpFromPosition(next_position, nums):return Truereturn Falsedef canJump(nums):"""使用回溯算法判断能否跳到最后一个位置:param nums: List[int], 输入的数组:return: bool, 是否能到达最后一个位置"""return canJumpFromPosition(0, nums)# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(2^n)),其中 n 是数组 nums 的长度,每个位置都可能产生递归调用。
  • 空间复杂度:(O(n)),递归的深度最多为 n

方法三:动态规划(自底向上)

解题步骤
  1. 初始化状态数组dp[i] 表示从位置 i 开始是否能到达数组的末尾。
  2. 状态转移:从后向前填充 dp 数组,根据 dp[j] (对于所有 i < j <= i+nums[i]) 更新 dp[i]
  3. 结果返回:返回 dp[0]
完整的规范代码
def canJump(nums):"""使用动态规划算法判断能否跳到最后一个位置:param nums: List[int], 输入的数组:return: bool, 是否能到达最后一个位置"""n = len(nums)dp = [False] * ndp[n - 1] = Truefor i in range(n - 2, -1, -1):furthest_jump = min(i + nums[i], n - 1)for j in range(i + 1, furthest_jump + 1):if dp[j]:dp[i] = Truebreakreturn dp[0]# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n^2)),其中 n 是数组 nums 的长度,对于每个元素,可能需要遍历 nums[i] 次。
  • 空间复杂度:(O(n)),存储状态数组 dp 需要 n 个额外空间。

方法四:优化的贪心算法

解题步骤
  1. 从后向前遍历:从数组的倒数第二个元素开始,向前遍历数组。
  2. 更新目标位置:如果当前位置加上可跳跃的最大长度大于或等于目标位置,则更新目标位置为当前位置。
  3. 结果判断:遍历结束后,如果目标位置更新为数组的起始位置,则返回 true,否则返回 false
完整的规范代码
def canJump(nums):"""使用优化的贪心算法判断能否跳到最后一个位置:param nums: List[int], 输入的数组:return: bool, 是否能到达最后一个位置"""n = len(nums)lastPos = n - 1  # 最初目标位置为数组的最后一个位置for i in range(n - 2, -1, -1):  # 从倒数第二个位置向前遍历if i + nums[i] >= lastPos:  # 如果当前位置能跳到或跳过目标位置lastPos = i  # 更新目标位置为当前位置return lastPos == 0  # 最终目标位置是否为起始位置# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n)),其中 n 是数组 nums 的长度,只需遍历一次数组。
  • 空间复杂度:(O(1)),使用了常数的额外空间。

方法五:索引哈希映射

解题步骤
  1. 建立索引哈希映射:创建一个字典来记录每个元素能达到的最远距离。
  2. 判断可达性:从第一个元素开始,逐个检查每个元素是否可达,同时更新可达的最远距离。
  3. 递归结束条件:如果在某个点发现最远距离无法继续向前或已覆盖数组末尾,则停止。
完整的规范代码
def canJump(nums):"""使用索引哈希映射法判断能否跳到最后一个位置:param nums: List[int], 输入的数组:return: bool, 是否能到达最后一个位置"""max_reach = 0  # 初始化最远可达位置for i in range(len(nums)):if i > max_reach:return False  # 当前索引不可达max_reach = max(max_reach, i + nums[i])  # 更新最远可达位置if max_reach >= len(nums) - 1:return True  # 已可达数组末尾return False# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n)),其中 n 是数组 nums 的长度,只需遍历一次数组。
  • 空间复杂度:(O(1)),使用了常数的额外空间。

不同算法的优劣势对比

特征方法一: 贪心算法方法二: 回溯算法方法三: 动态规划方法四: 优化贪心方法五: 索引哈希映射
时间复杂度(O(n))(O(2^n))(O(n^2))(O(n))(O(n))
空间复杂度(O(1))(O(n))(O(n))(O(1))(O(1))
优势快速简单理论上完备结构清晰更直观高效直观简洁
劣势基本无极度低效空间复杂需逆向思维与方法一类似

应用示例详解

跳跃游戏的算法在多个领域内都有广泛的应用,特别是在游戏开发、动画制作、机器学习等领域。以下是两个具体的应用场景,展示如何将跳跃游戏算法转化为实际可用的技术解决方案。

应用一:游戏开发中的关卡可玩性验证

在平台跳跃游戏的开发过程中,设计师常常需要创建出既具有挑战性又能确保玩家能够完成的关卡。使用跳跃游戏算法可以帮助开发者验证任何给定关卡的可玩性。

场景描述

  • 设计师创建了一个关卡,其中包含不同高度和间隔的平台,玩家从起点开始,需要通过跳跃到达终点。
  • 每个平台的数字表示玩家从该点最多可以向前跳跃的距离(即 nums 数组)。

技术实现

  • 开发者使用贪心算法,从起点开始,实时计算玩家可以到达的最远距离。
  • 如果在任一点,计算得到的最远距离小于该点的索引,意味着玩家无法从当前平台跳到下一个平台,关卡不可通行。

代码示例

def verify_level(nums):max_reach = 0for i, jump in enumerate(nums):if i > max_reach:return False, i  # 返回不可通行的最远点max_reach = max(max_reach, i + jump)if max_reach >= len(nums) - 1:return True, None  # 关卡可通行return False, len(nums) - 1# 关卡设计示例:玩家可以从每个位置跳跃的最大长度
level_design = [2, 3, 1, 0, 4, 2, 1]
is_playable, fail_point = verify_level(level_design)
print(f"Level Playable: {is_playable}, Failure Point: {fail_point}")

输出解析

  • 如果关卡可通行,函数返回 TrueNone
  • 如果关卡不可通行,函数指出玩家被卡住的具体位置。
应用二:动画制作中的运动路径规划

动画制作中,制定角色或物体的移动路径是一个核心任务,跳跃游戏算法可以用来确保动画中的运动路径是连贯和逻辑上可行的。

场景描述

  • 动画师需要创建一个场景,其中一个角色需要从场景的一端跳跃到另一端。
  • 每个可能的着陆点的数字表示从该点角色能够跳跃的最大长度。

技术实现

  • 使用贪心算法来确定角色的每一步是否都能顺利落到一个合法的着陆点。
  • 这样的算法保证了动画的连贯性和视觉上的合理性。

代码示例

def plan_animation_path(spots):reach = 0for i in range(len(spots)):if i > reach:return False  # 角色无法继续前进reach = max(reach, i + spots[i])return True  # 角色可以顺利完成动画# 动画路径设计示例:角色可以从每个位置跳跃的最大长度
animation_path = [1, 2, 0, 3, 2, 0, 1]
can_complete = plan_animation_path(animation_path)
print(f"Animation Path Complete: {can_complete}")

输出解析

  • 返回 True 表示角色可以顺利从起点跳到终点。
  • 返回 False 表示存在至少一个点使得角色无法从该点继续前进。

总结

通过上述应用示例,我们可以看到跳跃游戏算法不仅仅局限于理论问题,它可以广泛应用于实际项目中,如游戏开发和动画制作,帮助开发者和设计师验证和规划合理的路径和策略。这种算法的实际应用强调了线性代数在现代编程中的实用价值和广泛适用性。

这篇关于LeetCode题目55:跳跃游戏【python5种算法贪心/回溯/动态规划/优化贪心/索引哈希映射 详解】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925485

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

C#特性(Attributes)和反射(Reflection)详解

《C#特性(Attributes)和反射(Reflection)详解》:本文主要介绍C#特性(Attributes)和反射(Reflection),具有很好的参考价值,希望对大家有所帮助,如有错误... 目录特性特性的定义概念目的反射定义概念目的反射的主要功能包括使用反射的基本步骤特性和反射的关系总结特性

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

MySQL中SQL的执行顺序详解

《MySQL中SQL的执行顺序详解》:本文主要介绍MySQL中SQL的执行顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql中SQL的执行顺序SQL执行顺序MySQL的执行顺序SELECT语句定义SELECT语句执行顺序总结MySQL中SQL的执行顺序

Java资源管理和引用体系的使用详解

《Java资源管理和引用体系的使用详解》:本文主要介绍Java资源管理和引用体系的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Java的引用体系1、强引用 (Strong Reference)2、软引用 (Soft Reference)3、弱引用 (W

C语言中的常见进制转换详解(从二进制到十六进制)

《C语言中的常见进制转换详解(从二进制到十六进制)》进制转换是计算机编程中的一个常见任务,特别是在处理低级别的数据操作时,C语言作为一门底层编程语言,在进制转换方面提供了灵活的操作方式,今天,我们将深... 目录1、进制基础2、C语言中的进制转换2.1 从十进制转换为其他进制十进制转二进制十进制转八进制十进

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模