代码随想录算法训练营第四十六天| 139.单词拆分,关于多重背包,你该了解这些!, 背包问题总结篇!

本文主要是介绍代码随想录算法训练营第四十六天| 139.单词拆分,关于多重背包,你该了解这些!, 背包问题总结篇!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 题目与题解

参考资料:背包问题总结

139.单词拆分

题目链接:139.单词拆分

代码随想录题解:139.单词拆分

视频讲解:动态规划之完全背包,你的背包如何装满?| LeetCode:139.单词拆分_哔哩哔哩_bilibili

解题思路:

        转换为背包问题,单词数组是可以放入背包的物品,字符串是背包,单词可以无限取,所以是完全背包问题,又因为单词是有顺序的,所以该题是求排列。

        但写的时候就很懵了,因为这里不是计算价值,也不是计算重量,没有办法直接将其value相加,不知道该咋写,只能看答案。

看完代码随想录之后的想法 

        首先还是要明确,dp的含义一般就是题目要求的结果。所以这题,dp数组表示当字符串长度为dp[i]时,是否存在符合条件的单词组合,存在则为true。

        由于是排列,所以应该先遍历背包(i),后遍历物品(j),递推公式为:当dp[j]为true,表示字符串长度为j时存在单词组合,所以只需要查询substr(j,i)的子字符串是否在单词数组中存在,存在则将当前dp[i]置为true。

        初始化dp[0]必须为true,否则dp计算出来永远为false。

class Solution {public boolean wordBreak(String s, List<String> wordDict) {boolean[] dp = new boolean[s.length()+1];dp[0] = true;for (int i = 1; i < dp.length; i++) {for (int j = 0; j < i; j++) {String substr = s.substring(j, i);if (dp[j] && wordDict.contains(substr)) {dp[i] = true;break;}}}return dp[s.length()];}
}

遇到的困难

        dp的定义一开始没有理清楚,虽然知道是完全背包的排列问题,但是没有想到用子字符串作为计算的方法。好难。

关于多重背包,你该了解这些!

题目链接:关于多重背包,你该了解这些!

代码随想录题解:关于多重背包,你该了解这些!

解题思路:

        多重背包就是01背包的升级版,只要把多个重量和价值相同的物品当作01背包里面多个不同的物品就可以了,同样用01背包的思路来做,只不过遍历的时候要多加一个对物品数量的遍历。

public class ID56Kama {public static void main (String[] args) {Scanner scanner = new Scanner(System.in);int C = scanner.nextInt();int N = scanner.nextInt();int[] w = new int[N];int[] v = new int[N];int[] k = new int[N];for (int i = 0; i < N; i++) {w[i] = scanner.nextInt();}for (int i = 0; i < N; i++) {v[i] = scanner.nextInt();}for (int i = 0; i < N; i++) {k[i] = scanner.nextInt();}int[] dp = new int[C+1];for (int i = 0; i < N; i++) {for (int k1 = 0; k1 < k[i]; k1++) {for (int j = C; j >= w[i]; j--) {dp[j] = Math.max(dp[j], dp[j-w[i]] + v[i]);}}}System.out.println(dp[C]);}
}

看完代码随想录之后的想法 

        随想录计算时用相乘代替累加,本质是一样的。

import java.util.Scanner;
class multi_pack{public static void main(String [] args) {Scanner sc = new Scanner(System.in);/*** bagWeight:背包容量* n:物品种类*/int bagWeight, n;//获取用户输入数据,中间用空格隔开,回车键换行bagWeight = sc.nextInt();n = sc.nextInt();int[] weight = new int[n];int[] value = new int[n];int[] nums = new int[n];for (int i = 0; i < n; i++) weight[i] = sc.nextInt();for (int i = 0; i < n; i++) value[i] = sc.nextInt();for (int i = 0; i < n; i++) nums[i] = sc.nextInt();int[] dp = new int[bagWeight + 1];//先遍历物品再遍历背包,作为01背包处理for (int i = 0; i < n; i++) {for (int j = bagWeight; j >= weight[i]; j--) {//遍历每种物品的个数for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) {dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);}}}System.out.println(dp[bagWeight]);}
}

遇到的困难

        01背包已经忘记了,复习一下。

今日收获

        巩固了一下背包问题。

        基础是动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

        背包问题常见的递归公式有以下几种:

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

  • 动态规划:416.分割等和子集(opens new window)
  • 动态规划:1049.最后一块石头的重量 II(opens new window)

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

  • 动态规划:494.目标和(opens new window)
  • 动态规划:518. 零钱兑换 II(opens new window)
  • 动态规划:377.组合总和Ⅳ(opens new window)
  • 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

  • 动态规划:474.一和零(opens new window)

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

  • 动态规划:322.零钱兑换(opens new window)
  • 动态规划:279.完全平方数

遍历顺序

01背包 / 多重背包

        二维:先遍历背包或先遍历物品都可以,从小到大遍历

        一维:先遍历物品后遍历背包,遍历背包时为了防止更新异常需要从大到小遍历。

完全背包:

        普通问题(如求最大或最小数):先遍历背包或先遍历物品都可以,从小到大遍历

        求组合数:先遍历物品后遍历背包

        求排列数:先遍历背包后遍历物品

这篇关于代码随想录算法训练营第四十六天| 139.单词拆分,关于多重背包,你该了解这些!, 背包问题总结篇!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924365

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对