【数据结构】算法效率揭秘:时间与空间复杂度的较量

2024-04-21 11:12

本文主要是介绍【数据结构】算法效率揭秘:时间与空间复杂度的较量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在计算机科学中,时间复杂度和空间复杂度是衡量算法性能的两个重要指标。它们分别表示算法在执行过程中所需的时间和空间资源。了解这两个概念有助于我们评估和比较不同算法的优劣,从而选择更合适的算法解决问题~

欢迎关注个人主页:逸狼


创造不易,可以点点赞吗~

如有错误,欢迎指出~



目录

前言

 算法效率

时间复杂度

大O的渐进表示法

推导大O阶

示例1  冒泡排序

若没有优化的代码

考虑最好的情况

考虑最坏的情况

代码优化后

考虑最好的情况

示例2  二分查找

示例3  递归(一路)

示例4  递归(二路)

空间复杂度

示例1(代码与上面示例1同)冒泡排序

示例2

示例3(代码与上面示例3同)递归(一路)


 算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作 空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,

时间复杂度

在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间

一个 算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。一个算 法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号


// 请计算一下func1基本操作执行了多少次?
void func1(int N){int count = 0;for (int i = 0; i < N ; i++) {for (int j = 0; j < N ; j++) {count++;//n^2}}
for (int k = 0; k < 2 * N ; k++) {count++;//2n}int M = 10;while ((M--) > 0) {count++;//n}System.out.println(count);
}

实际中我们计算时间复杂度时,只需要大概执行次数,所以使用大O的渐进表示法。N代表问题的规模。

推导大O阶

  1. 常数1取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)

大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到 

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

示例1  冒泡排序

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {for (int end = array.length; end > 0; end--) {boolean sorted = true;for (int i = 1; i < end; i++) {if (array[i - 1] > array[i]) {Swap(array, i - 1, i);sorted = false;}}if (sorted == true) {break;}}
}

若没有优化的代码

        if (sorted == true) {break;

考虑最好的情况

外循环end=n时,内循环要走n-1次

外循环end=n-1时,内循环要走n-2次

……

外循环end=2时,内循环要走1次

所以最好的情况总次数(n-1)+(n-2)+(n-3)+……+1=n^2/2-n/2,所以时间复杂度为O(n^2)

考虑最坏的情况

因为有两个for循环,直接n*n=n^2

代码优化后

考虑最好的情况

第一遍就是有序的,即至少要遍历一遍数据,所以时间复杂度为O(n)

示例2  二分查找

// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {int begin = 0;int end = array.length - 1;while (begin <= end) {int mid = begin + ((end-begin) / 2);if (array[mid] < value)begin = mid + 1;else if (array[mid] > value)end = mid - 1;elsereturn mid;}return -1;
}

二分查找,每次去除掉一半的数据,

考虑最坏的情况:找到最后一个数字为目标数字,

有N个数据,设当折半x次找到,则N/2^x=1,得x=log2N

示例3  递归(一路)

递归的时间复杂度=递归的次数 * 每次递归后的代码的执行次数

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {return N < 2 ? N : factorial(N-1) * N;
}

这里的递归次数为N次

每次递归回来执行了三目运算符,即1次

所以时间复杂度为N*1=N,即O(N)

示例4  递归(二路)

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

考虑最坏的情况,这里的递归次数为2^0+2^1+……+2^(N-1)=2^N-1次

每次递归回来执行了三目运算符,即1次

所以时间复杂度为2^N-1,即O(2^N)

空间复杂度

是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

示例1(代码与上面示例1同)冒泡排序

使用了常数个额外空间,所以空间复杂度为 O(1)

示例2

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {long[] fibArray = new long[n + 1];fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; i++) {fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

 示例2动态开辟了N个空间,空间复杂度为 O(N)

示例3(代码与上面示例3同)递归(一路)

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

这篇关于【数据结构】算法效率揭秘:时间与空间复杂度的较量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922942

相关文章

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求