yolov数据集增强并扩充(xml文件一起扩充)

2024-04-21 05:12

本文主要是介绍yolov数据集增强并扩充(xml文件一起扩充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

废话不多说,直接上代码!

代码只需要修改源文件路径、保存文件路径即可。

import xml.etree.ElementTree as ET
import os
import numpy as np
from PIL import Image
import shutil
import imgaug as ia
from imgaug import augmenters as iaa
from tqdm import tqdmimport xml.etree.ElementTree as ET
import os
import numpy as np
from PIL import Image
import shutil
import imgaug as ia
from imgaug import augmenters as iaa
from tqdm import tqdm# 作用:
# 这段代码主要是通过遍历 XML 文件的节点结构,提取出物体边界框(bounding box)的坐标信息,并将其存储在列表中返回。
# 同时,代码中运用了 Python 中的 os 模块来处理文件路径,以及使用了 ElementTree 模块(一般通过
# import xml.etree.ElementTree as ET 导入)来解析 XML 文件。
def read_xml_annotation(root, image_id):# 使用 open 函数来打开 XML 文件,文件路径是 root 和 image_id 的组合,使用 UTF-8 编码方式in_file = open(os.path.join(root, image_id), encoding='UTF-8')tree = ET.parse(in_file) #使用 ET.parse 函数来解析 XML 文件,获取 XML 文件的树结构。root = tree.getroot()  #获取 XML 文件的根节点。bndboxlist = []for object in root.findall('object'):  # 找到root节点下的所有名字为’country‘的节点bndbox = object.find('bndbox')  # 获取每个 ‘object’ 节点下的 ‘bndbox’ 子节点xmin = int(bndbox.find('xmin').text) #获取 ‘bndbox’ 子节点下的 ‘xmin’ 节点的文本内容并转换为整数,依次获取其他边界框坐标信息。xmax = int(bndbox.find('xmax').text)ymin = int(bndbox.find('ymin').text)ymax = int(bndbox.find('ymax').text)# print(xmin,ymin,xmax,ymax)bndboxlist.append([xmin, ymin, xmax, ymax])return bndboxlist#作用:
# 这段代码的主要作用是根据传入的新的物体边界框信息列表 new_target,
# 修改原始的 XML 文件中的物体边界框信息,然后保存为新的 XML 文件
def change_xml_list_annotation(root, image_id, new_target, saveroot, xml_id):save_path = os.path.join(saveroot, xml_id) #拼接保存路径in_file = open(os.path.join(root, str(image_id) + '.xml'), encoding='UTF-8')  # 这里root分别由两个意思tree = ET.parse(in_file) #使用 ET.parse 函数来解析 XML 文件,获取 XML 文件的树结构。elem = tree.find('filename')elem.text = xml_id + img_type #修改 ‘filename’ 节点的文本内容,将其设为 xml_id 加上 img_type。xmlroot = tree.getroot() #获取 XML 文件的根节点。index = 0for object in xmlroot.findall('object'):  # 找到xmlroot节点下的所有名为’country‘的节点bndbox = object.find('bndbox')  # 子节点下节点rank的值new_xmin = new_target[index][0]new_ymin = new_target[index][1]new_xmax = new_target[index][2]new_ymax = new_target[index][3]xmin = bndbox.find('xmin')xmin.text = str(new_xmin)ymin = bndbox.find('ymin')ymin.text = str(new_ymin)xmax = bndbox.find('xmax')xmax.text = str(new_xmax)ymax = bndbox.find('ymax')ymax.text = str(new_ymax)index += 1tree.write(save_path + '.xml') ## AUG_IMG_DIR:存储增强后的影像文件地址
# AUGLOOP:增强倍数
# IMG_DIR:原照片地址
# XML_DIR:原xml文件地址
# AUG_XML_DIR:增强后的xml文件地址
def simple_example(AUGLOOP,IMG_DIR,XML_DIR,AUG_IMG_DIR,AUG_XML_DIR):boxes_img_aug_list = []new_bndbox_list = []new_name = Nonefor root, sub_folders, files in os.walk(XML_DIR):  #使用 os.walk 遍历 XML_DIR 目录下的文件。for name in tqdm(files):   # 对遍历到的每个文件名进行迭代,使用 tqdm 来显示进度条。bndbox = read_xml_annotation(XML_DIR, name) #调用 read_xml_annotation 函数来读取 XML 注释文件中的边界框信息。shutil.copy(os.path.join(XML_DIR, name), AUG_XML_DIR) #将当前XML文件 复制到 新的XML目录中。# 尝试将相应的图像文件从原始图像目录复制到增强后的图像目录。如果出现异常,则将.JPG格式的图像复制到增强后的目录。#这里的[:-4]表示从字符串的开头开始切片,直到倒数第四个字符之前(不包括倒数第四个字符),因此它实际上是将字符串的后缀(比如文件的扩展名)去掉。try:shutil.copy(os.path.join(IMG_DIR, name[:-4] + img_type), AUG_IMG_DIR)except:shutil.copy(os.path.join(IMG_DIR, name[:-4] + '.JPG'), AUG_IMG_DIR)# print(os.path.join(IMG_DIR, name[:-4] + img_type))for epoch in range(1, AUGLOOP + 1):# 增强if epoch == 1:seq = iaa.Sequential([####0.75-1.5随机数值为alpha,对图像进行对比度增强,该alpha应用于每个通道iaa.ContrastNormalization((0.75, 1.5), per_channel=True),])elif epoch == 2:seq = iaa.Sequential([#### loc 噪声均值,scale噪声方差,50%的概率,对图片进行添加白噪声并应用于每个通道iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.1 * 255), per_channel=0.75),])elif epoch == 3:seq = iaa.Sequential([iaa.Fliplr(1),  # 水平镜像翻转])elif epoch == 4:seq = iaa.Sequential([iaa.Affine(rotate=90) # 翻转90度])elif epoch == 5:seq = iaa.Sequential([iaa.Affine(rotate=180)  # 翻转180度])elif epoch == 6:seq = iaa.Sequential([iaa.Affine(rotate=270)])  # 翻转270度seq_det = seq.to_deterministic()  # 保持坐标和图像同步改变,而不是随机# 读取图片try:img = Image.open(os.path.join(IMG_DIR, name[:-4] + img_type))except:img = Image.open(os.path.join(IMG_DIR, name[:-4] + '.JPG'))# JPG不支持alpha透明度,有可能报RGBA错误,将图片丢弃透明度转成RGBimg = img.convert('RGB')# sp = img.sizeimg = np.asarray(img) #并将其转换为 NumPy 数组# bndbox 坐标增强for i in range(len(bndbox)):#将边界框坐标转换为 imgaug 库中的 BoundingBoxesOnImage 对象。bbs = ia.BoundingBoxesOnImage([ia.BoundingBox(x1=bndbox[i][0], y1=bndbox[i][1], x2=bndbox[i][2], y2=bndbox[i][3]),], shape=img.shape)#对边界框进行增强,并将增强后的边界框添加到列表 boxes_img_aug_list 中。bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]boxes_img_aug_list.append(bbs_aug)# new_bndbox_list:[[x1,y1,x2,y2],...[],[]]n_x1 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x1)))n_y1 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y1)))n_x2 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x2)))n_y2 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y2)))if n_x1 == 1 and n_x1 == n_x2:n_x2 += 1if n_y1 == 1 and n_y2 == n_y1:n_y2 += 1if n_x1 >= n_x2 or n_y1 >= n_y2:print('error', name)new_bndbox_list.append([n_x1, n_y1, n_x2, n_y2])# 存储变化后的图片image_aug = seq_det.augment_images([img])[0]# 新文件名new_name = name[:-4] + '-' + str(epoch)path = os.path.join(AUG_IMG_DIR, new_name + img_type)image_auged = bbs.draw_on_image(image_aug, thickness=0)Image.fromarray(image_auged).save(path)# 存储变化后的XMLchange_xml_list_annotation(XML_DIR, name[:-4], new_bndbox_list, AUG_XML_DIR, new_name)new_bndbox_list = []if __name__ == "__main__":# 随机种子ia.seed(1)img_type = '.jpg'# img_type = '.png'# 原数据路径IMG_DIR = "E:/Desktop/testt/image"XML_DIR = "E:/Desktop/testt/xml"# 存储增强后的影像文件夹路径AUG_IMG_DIR = "E:/Desktop/testt/new_img/"if not os.path.exists(AUG_IMG_DIR):os.mkdir(AUG_IMG_DIR)# 存储增强后的XML文件夹路径AUG_XML_DIR = "E:/Desktop/testt/new_xml/"if not os.path.exists(AUG_XML_DIR):os.mkdir(AUG_XML_DIR)# 数据增强n倍simple_example(6, IMG_DIR, XML_DIR, AUG_IMG_DIR, AUG_XML_DIR)

这篇关于yolov数据集增强并扩充(xml文件一起扩充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922227

相关文章

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很