yolov3算法中关于loss={'yolo_loss': lambda y_true, y_pred: y_pred}的理解

2024-04-20 20:18

本文主要是介绍yolov3算法中关于loss={'yolo_loss': lambda y_true, y_pred: y_pred}的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov3算法中关于loss={‘yolo_loss’: lambda y_true, y_pred: y_pred}的理解

参考文献:
(1)https://www.jianshu.com/p/7e45586c44be
(2)https://blog.csdn.net/wangdongwei0/article/details/82563689?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
(3)https://kexue.fm/archives/4493

所用的yolov3代码: https://github.com/qqwweee/keras-yolo3 ,解压之后用pycharm打开。

在train.py中有如下代码,对模型进行编译:

    if True:model.compile(optimizer=Adam(lr=1e-3), loss={# use custom yolo_loss Lambda layer.'yolo_loss': lambda y_true, y_pred: y_pred})

刚开始对 loss={‘yolo_loss’: lambda y_true, y_pred: y_pred})不理解,通过查看相关博客,个人理解如下:
首先查看 Keras中的目标函数(损失函数)的定义方法(路径是keras→losses.py):

def mean_squared_error(y_true, y_pred):return K.mean(K.square(y_pred - y_true), axis=-1)def mean_absolute_error(y_true, y_pred):return K.mean(K.abs(y_pred - y_true), axis=-1)def mean_absolute_percentage_error(y_true, y_pred):diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),K.epsilon(),None))return 100. * K.mean(diff, axis=-1)

可以发现y_true, y_pred是标准的函数输入参数,一个代表真实值(标签),一个代表预测值,函数返回的是即为预测值与真实值的某种误差函数。

但yolov3算法中,将loss函数写成一个Lambda层了,即该层的输出就是模型的loss值,也就是模型的预测值 y_pred.

model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})([*model_body.output, *y_true])

因此,模型compile时传递的是自定义的loss,自定义的方法是使用Python里的匿名函数,即 lambda y_true, y_pred: y_pred, 其中,该匿名函数的输入参数是y_true, y_pred: y_pred,代表模型的真实值和预测值,该匿名函数的返回值是y_pred,即模型的预测值,该预测值正是loss值。
对于loss={‘yolo_loss’: lambda y_true, y_pred: y_pred}中的’yolo_loss’,参考以下文献就明白了:
https://keras-zh.readthedocs.io/getting-started/functional-api-guide/
https://blog.csdn.net/xiaohuihui1994/article/details/81022043
我的理解是凡是在字典中的键,如loss={‘yolo_loss’: lambda y_true, y_pred: y_pred}中的’yolo_loss’,loss_weights={‘main_output’: 1., ‘aux_output’: 0.2})中的’main_output’,model.fit({‘main_input’: headline_data, ‘aux_input’: additional_data}, {‘main_output’: headline_labels, ‘aux_output’: additional_labels},epochs=50, batch_size=32)中的’main_input’、'aux_input’等,都是在在定义层时传递的一个 name 参数,即
model_loss = Lambda(yolo_loss, output_shape=(1,), name=‘yolo_loss’,
arguments={‘anchors’: anchors, ‘num_classes’: num_classes, ‘ignore_thresh’: 0.5})(
[*model_body.output, *y_true]) 中的name=‘yolo_loss’ 。

    if True:model.compile(optimizer=Adam(lr=1e-3), loss={# use custom yolo_loss Lambda layer.'yolo_loss': lambda y_true, y_pred: y_pred})

这篇关于yolov3算法中关于loss={'yolo_loss': lambda y_true, y_pred: y_pred}的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921229

相关文章

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java使用Stream流的Lambda语法进行List转Map的操作方式

《Java使用Stream流的Lambda语法进行List转Map的操作方式》:本文主要介绍Java使用Stream流的Lambda语法进行List转Map的操作方式,具有很好的参考价值,希望对大... 目录背景Stream流的Lambda语法应用实例1、定义要操作的UserDto2、ListChina编程转成M

使用easy connect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题

《使用easyconnect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题》:本文主要介绍使用easyconnect之后,maven无法... 目录使用easGWowCy connect之后,maven无法使用,原来需要配置-DJava.net.pr

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n