机器学习鸢尾花各种模型准确率对比

2024-04-20 17:04

本文主要是介绍机器学习鸢尾花各种模型准确率对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

流程

  1. 获取数据集
  2. 导入需要的包
  3. 读取数据
  4. 划分训练集和测试集
  5. 调用各种模型
  6. 比较准确率

获取数据集

链接:https://pan.baidu.com/s/1RzZyXsaiJB3e611itF466Q?pwd=j484 
提取码:j484 
--来自百度网盘超级会员V1的分享

导入需要的包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import matplotlib as mpl
## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False# 导入各种模型 svm,knn,RidgeClassifier(),LogisticRegression(逻辑回归)
# 支持向量机分类svc,最近邻居 knn,lr逻辑回归,rc
# SVM=Support Vector Machine 是支持向量
# SVC=Support Vector Classification就是支持向量机用于分类,这里是分类问题所以引入SVC
# SVR=Support Vector Regression.就是支持向量机用于回归分析
from sklearn.linear_model import LogisticRegression,RidgeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
# 到这里四种方式引入完毕
# 引入sklearn的划分训练集和测试集合
from sklearn.model_selection import train_test_split
# 计算模型准确率
from sklearn.metrics import accuracy_score`在这里插入代码片`

读取数据

iris_data=pd.read_csv('iris.csv', usecols=[ 1, 2, 3, 4,5])

划分训练集和测试集

x = iris_data[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]        		
r = iris_data['species']   
x_train, x_test, r_train, r_test = train_test_split(x, r, random_state=0)

调用各种模型

SVC

# svc训练
svm = SVC(C=1, kernel='linear')## 模型训练
svm.fit(x_train, r_train)

KNN

# knn训练
knn = KNeighborsClassifier(n_neighbors=1)
# 模型训练
knn.fit(x_train, r_train)

逻辑回归和RidgeClassifier

# 逻辑回归和RidgeClassifier训练
lr = LogisticRegression()
rc = RidgeClassifier()
# 模型训练
lr.fit(x_train, r_train)
rc.fit(x_train, r_train)

得到四个模型的测试集合准确度

# 得到4个模型测试集准确率
svm_score2 = accuracy_score(r_test, svm.predict(x_test))lr_score2 = accuracy_score(r_test, lr.predict(x_test))rc_score2 = accuracy_score(r_test, rc.predict(x_test))knn_score2 = accuracy_score(r_test, knn.predict(x_test))
print(svm_score2)
print(lr_score2)
print(rc_score2)
print(knn_score2)
#0.9736842105263158
#0.9736842105263158
#0.7631578947368421
#0.9736842105263158

绘图比较

# 绘图得到四个对比数据
x_tmp = [0,1,2,3]
# y_score1 = [svm_score1, lr_score1, rc_score1, knn_score1]
y_score2 = [svm_score2, lr_score2, rc_score2, knn_score2]plt.figure(facecolor='w')
# plt.plot(x_tmp, y_score1, 'r-', lw=2, label=u'训练集准确率')
plt.plot(x_tmp, y_score2, 'g-', lw=2, label=u'测试集准确率')
plt.xlim(0, 3)
plt.ylim(np.min((np.min(y_score1), np.min(y_score2)))*0.9, np.max((np.max(y_score1), np.max(y_score2)))*1.1)
plt.legend(loc = 'lower right')
plt.title(u'鸢尾花数据不同分类器准确率比较', fontsize=16)
plt.xticks(x_tmp, [u'SVM', u'Logistic', u'Ridge', u'KNN'], rotation=0)
plt.grid()
plt.show()

在这里插入图片描述

这篇关于机器学习鸢尾花各种模型准确率对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920831

相关文章

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种