机器学习鸢尾花各种模型准确率对比

2024-04-20 17:04

本文主要是介绍机器学习鸢尾花各种模型准确率对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

流程

  1. 获取数据集
  2. 导入需要的包
  3. 读取数据
  4. 划分训练集和测试集
  5. 调用各种模型
  6. 比较准确率

获取数据集

链接:https://pan.baidu.com/s/1RzZyXsaiJB3e611itF466Q?pwd=j484 
提取码:j484 
--来自百度网盘超级会员V1的分享

导入需要的包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import matplotlib as mpl
## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False# 导入各种模型 svm,knn,RidgeClassifier(),LogisticRegression(逻辑回归)
# 支持向量机分类svc,最近邻居 knn,lr逻辑回归,rc
# SVM=Support Vector Machine 是支持向量
# SVC=Support Vector Classification就是支持向量机用于分类,这里是分类问题所以引入SVC
# SVR=Support Vector Regression.就是支持向量机用于回归分析
from sklearn.linear_model import LogisticRegression,RidgeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
# 到这里四种方式引入完毕
# 引入sklearn的划分训练集和测试集合
from sklearn.model_selection import train_test_split
# 计算模型准确率
from sklearn.metrics import accuracy_score`在这里插入代码片`

读取数据

iris_data=pd.read_csv('iris.csv', usecols=[ 1, 2, 3, 4,5])

划分训练集和测试集

x = iris_data[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]        		
r = iris_data['species']   
x_train, x_test, r_train, r_test = train_test_split(x, r, random_state=0)

调用各种模型

SVC

# svc训练
svm = SVC(C=1, kernel='linear')## 模型训练
svm.fit(x_train, r_train)

KNN

# knn训练
knn = KNeighborsClassifier(n_neighbors=1)
# 模型训练
knn.fit(x_train, r_train)

逻辑回归和RidgeClassifier

# 逻辑回归和RidgeClassifier训练
lr = LogisticRegression()
rc = RidgeClassifier()
# 模型训练
lr.fit(x_train, r_train)
rc.fit(x_train, r_train)

得到四个模型的测试集合准确度

# 得到4个模型测试集准确率
svm_score2 = accuracy_score(r_test, svm.predict(x_test))lr_score2 = accuracy_score(r_test, lr.predict(x_test))rc_score2 = accuracy_score(r_test, rc.predict(x_test))knn_score2 = accuracy_score(r_test, knn.predict(x_test))
print(svm_score2)
print(lr_score2)
print(rc_score2)
print(knn_score2)
#0.9736842105263158
#0.9736842105263158
#0.7631578947368421
#0.9736842105263158

绘图比较

# 绘图得到四个对比数据
x_tmp = [0,1,2,3]
# y_score1 = [svm_score1, lr_score1, rc_score1, knn_score1]
y_score2 = [svm_score2, lr_score2, rc_score2, knn_score2]plt.figure(facecolor='w')
# plt.plot(x_tmp, y_score1, 'r-', lw=2, label=u'训练集准确率')
plt.plot(x_tmp, y_score2, 'g-', lw=2, label=u'测试集准确率')
plt.xlim(0, 3)
plt.ylim(np.min((np.min(y_score1), np.min(y_score2)))*0.9, np.max((np.max(y_score1), np.max(y_score2)))*1.1)
plt.legend(loc = 'lower right')
plt.title(u'鸢尾花数据不同分类器准确率比较', fontsize=16)
plt.xticks(x_tmp, [u'SVM', u'Logistic', u'Ridge', u'KNN'], rotation=0)
plt.grid()
plt.show()

在这里插入图片描述

这篇关于机器学习鸢尾花各种模型准确率对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920831

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示