【Applied Algebra】隐藏子群问题和Shor算法的新视角

2024-04-20 15:44

本文主要是介绍【Applied Algebra】隐藏子群问题和Shor算法的新视角,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

隐藏子群问题和Shor算法的新视角

在这里插入图片描述

隐藏子群问题是指给定一个群和一个函数,该函数对于群的一个子群是常数,并且对于子群的任何两个不同的左陪集有不同的值,问题是找到这个子群.HSP是许多量子算法的基础,其中最著名的是Shor的算法,它可以用来分解大整数和计算离散对数,这直接威胁到RSA和ECC等基于这些数学问题难度的公钥加密系统的安全性.


隐藏子群问题

隐藏子群问题(Hidden Subgroup Problem, HSP) 是量子计算中一个非常重要的问题,它在理论计算机科学和量子算法的设计中扮演着核心角色.在密码学中,隐藏子群问题的解决方案构成了解决一些基础密码学问题的基石,尤其是与数论相关的那些问题.

隐藏子群问题的定义

隐藏子群问题涉及到以下的组件:

  • 一个有限群 G G G.
  • 一个保密的子群 H ⊂ G H \subset G HG.
  • 一个函数 f : G → X f:G \rightarrow X f:GX,它对于子群 H H H 的所有元素有相同的输出,并且对于 H H H 的不同左陪集有不同的输出.

问题的目标是确定子群 H H H 的生成元,仅仅通过观察函数 f f f 的行为.这个问题在量子计算中特别重要,因为量子算法能够利用量子叠加和纠缠来同时查询多个函数值,从而有效地揭示出隐藏的群结构.

  • 例(整数群的一个HSP):令 f f f是一个 Z N → 颜色 \mathbb{Z}_N \rightarrow \text{颜色} ZN颜色的一个函数,满足有 s ∈ Z N s \in \mathbb{Z}_N sZN,对于任意的 x ∈ Z N x \in \mathbb{Z}_N xZN,要么有 f ( x ) = f ( x + r ) f(x)=f(x+r) f(x)=f(x+r),要么 f f f的值不同(此时 Z s \mathbb{Z}_s Zs即为一个隐藏子群);

整数分解问题:在整数分解问题中,目标是找到一个大数 N N N 的素数相乘的分解.Shor的算法通过量子傅立叶变换解决了这一问题的一个隐藏子群版本.具体来说,给定一个随机选择的 a < N a < N a<N,算法寻找满足 a r ≡ 1 ( mod N ) a^r \equiv 1 (\text{mod} \, N) ar1(modN) 的最小正整数 r r r,即 a a a 的阶.这实际上涉及到寻找循环群 Z N × \mathbb{Z}_N^\times ZN× 的一个隐藏子群.

在这个问题中,我们可以构造一个周期函数 f ( x ) = a x m o d N f(x) = a^x \mod N f(x)=axmodN,其周期就是 a a a 的阶 r r r.隐藏子群 H H H 就是所有满足 f ( x ) = f ( x + r ) f(x) = f(x+r) f(x)=f(x+r) x x x 的集合.量子算法通过构建和测量这个周期函数的量子叠加状态来高效地找到周期 r r r,从而解决整数分解问题.

离散对数问题:在离散对数问题中,给定一个群 G G G,一个生成元 g g g 和一个元素 h ∈ G h \in G hG,需要找到一个整数 x x x,使得 g x = h g^x = h gx=h.Shor提出了一个量子算法来解决这个问题,这也可以视为一个关于寻找循环群的隐藏子群的问题.

对于阶为 q q q 的循环群 G G G 和子群 H H H,如果 H H H 是由 h h h 生成的,则所有 H H H 的元素都具有相同的离散对数相对于 g g g, 将每个元素 u ∈ G u \in G uG 映射到 ( u , g u m o d N ) (u, g^u \mod N) (u,gumodN);可以看出这里的隐藏子群就是所有具有相同 g g g 幂次的元素的集合,相当于 H H H G G G 中的核.而离散对数问题的量子算法利用了HSP框架,通过找到该核构成的子群,从而得出离散对数 x x x.

  • 例(一个HSP算例):假设 N = 21 N = 21 N=21,且 a = 2 a = 2 a=2,那么 a a a 相对于 N N N 的阶是 r = 6 r = 6 r=6,因为 2 6 ≡ 1 ( m o d 21 ) 2^6 \equiv 1 \pmod{21} 261(mod21).我们可以观察到 2 0 , 2 6 , 2 12 , … 2^0, 2^6, 2^{12}, \ldots 20,26,212, 都模 21 21 21 同余于 1 1 1,因此 6 ⋅ Z 6\cdot\mathbb{Z} 6Z构成了 Z \mathbb{Z} Z 中的一个隐藏子群(加法群的意义下).量子算法可以在 a x m o d 21 a^x \mod 21 axmod21 上操作,高效地找到这个隐藏子群的周期 6 6 6.

Shor’s算法的物理视角

关于Shor’s算法的教程已经汗牛充栋了,我们就不再费口舌再讲了;但是我们从感性的物理视角来看看它的本质;首先是傅里叶变换和逆变换的解读,其实就是波的分解和再叠加,比如潮汐力的因素有很多,傅里叶变换相当于找到这些基因素(逆变换相当于再揉在一起):

在这里插入图片描述
现在来解读"量子门"这个东西的本质,其实就是一种酉作用,指可逆,作用就相当于说是某种效应的"等效";总而言之,就是对某种状态的变换:
在这里插入图片描述
现在使用一个简单的循环来寻找HSP隐藏的周期.实际上,寻找这种函数的周期是Shor算法的基础,这其中使用量子傅立叶逆变换可以高效地完成周期的寻找,为什么?因为量子傅立叶逆变换就是"揉",揉出来一个综合的波形,最终的效果,其实就相当于是离散对数上的双缝干涉实验!!(这是Shor本人的解读)
在这里插入图片描述

这篇关于【Applied Algebra】隐藏子群问题和Shor算法的新视角的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/920664

相关文章

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

MySQL磁盘空间不足问题解决

《MySQL磁盘空间不足问题解决》本文介绍查看空间使用情况的方式,以及各种空间问题的原因和解决方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录查看空间使用情况Binlog日志文件占用过多表上的索引太多导致空间不足大字段导致空间不足表空间碎片太多导致空间不足临时表空间

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

Java中InputStream重复使用问题的几种解决方案

《Java中InputStream重复使用问题的几种解决方案》在Java开发中,InputStream是用于读取字节流的类,在许多场景下,我们可能需要重复读取InputStream中的数据,这篇文章主... 目录前言1. 使用mark()和reset()方法(适用于支持标记的流)2. 将流内容缓存到字节数组

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

解决Failed to get nested archive for entry BOOT-INF/lib/xxx.jar问题

《解决FailedtogetnestedarchiveforentryBOOT-INF/lib/xxx.jar问题》解决BOOT-INF/lib/xxx.jar替换异常需确保路径正确:解... 目录Failed to get nested archive for entry BOOT-INF/lib/xxx

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav