代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数

本文主要是介绍代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

70. 爬楼梯 (进阶)

题目链接:70. 爬楼梯 (进阶)

代码随想录题解:70. 爬楼梯 (进阶)

解题思路:

        这道题要求每次可以爬1-m层的楼梯,最终爬到n,相当于完全背包问题中,有无限个重量为1-m的物品,每次可以取不同重量的物品,要求最后重量加起来等于n时有多少种排列。

        那这题就跟组合总和IV是一样的了,就是完全背包+排列,因此for循环写的时候背包遍历在外侧,物品遍历在内侧,由于是完全背包问题,所以要从前往后遍历,递推公式求数目,那dp[i] += dp[i-j]即可。

import java.util.*;public class Main {public static void main (String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int m = scanner.nextInt();int[] dp = new int[n+1];dp[0] = 1;for (int i = 0; i <= n; i++) {for (int j = 1; j <= m && j <= i; j++) {dp[i] += dp[i - j];}}System.out.println(dp[n]);}
}

看完代码随想录之后的想法 

        了解套路以后就可以套公式了

遇到的困难

        虽然不是特别懂初始化要求、遍历顺序和遍历时究竟是物品在外面还是背包在外面,但是记住公式就能写。

322. 零钱兑换 

题目链接:​​​​​​​322. 零钱兑换

代码随想录题解:​​​​​​​322. 零钱兑换

视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?| LeetCode:322.零钱兑换_哔哩哔哩_bilibili

解题思路:

        硬币数量无限,求固定总和对应的最少硬币数目,实质上就是完全背包问题中的组合问题,不过,相比普通背包问题要求价值最大的物品组合,这里要求最少硬币数目,递推公式里面将用min而非max,所以对初始化有了一定要求,第一次没有写对。

看完代码随想录之后的想法 

        1. 确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

        2. 确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

        3.dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

        4.确定遍历顺序

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount+1];Arrays.sort(coins);Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {if (dp[j - coins[i]] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}if (dp[amount] == Integer.MAX_VALUE) return -1;return dp[amount];}
}

遇到的困难

        一开始其实递推公式想到了,但是初始化碰到了问题。最早是直接将dp[0]等于最大值,结果递推时没有限制dp[j-coins[i]]的大小,直接溢出了,后面就有点摸不着头脑了。还有dp[0]=0也很关键,因为按照定义目标值为0时硬币数就应该是0。

279.完全平方数 

题目链接:​​​​​​​279.完全平方数 

代码随想录题解:279.完全平方数 

视频讲解:动态规划之完全背包,换汤不换药!| LeetCode:279.完全平方数_哔哩哔哩_bilibili

解题思路:

        这题跟前一题其实是一样一样的,不同点在于coins这个数组由完全平方数[1*1,2*2,3*3.....]代替了。遍历时注意i*i和j都要小于n就可以。

class Solution {public int numSquares(int n) {int[] dp = new int[n+1];Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 1; i*i <= n; i++) {for (int j = i*i; j <= n; j++) {if (dp[j - i*i] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j-i*i] + 1);}}}if (dp[n] == Integer.MAX_VALUE) return 0;else return dp[n];}
}

看完代码随想录之后的想法 

        这题本质就是:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

        这类求一共有多少组合的问题,先遍历物品或先遍历背包都不影响结果。

遇到的困难

        一开始写的外层条件是i<=n,明显效率较低,因为背包内的物品是i*i,其值不能超过n,因此可以多加一点限制,提高效率。

今日收获

        做了这么多题,感觉公式慢慢熟悉了,就是不知道碰到新的应用题能不能想到用背包做。

这篇关于代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919279

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型