二叉树的层次遍历(配图详解)

2024-04-20 02:28

本文主要是介绍二叉树的层次遍历(配图详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉树的层次遍历

  层序遍历顾名思义就是一层一层的遍历的树中的所有结点。

typedef char EmpeType

在本篇文章中,将char类型使用EmpeType

typedef char EmpeType;

创建一个结构体

typedef struct BiTNode {EmpeType data;  //数据域struct BiTNode* lchild;   //左孩子struct BiTNode* rchild;   //右孩子
}BitNode;

快速创建一个树

首先我们进行快速创建一个二叉树。

在这里插入图片描述

//快速创建一个树BiTNode* A = (BiTNode*)malloc(sizeof(BiTNode));A->data = 'A';A->lchild = NULL;A->rchild = NULL;BiTNode* B = (BiTNode*)malloc(sizeof(BiTNode));B->data = 'B';B->lchild = NULL;B->rchild = NULL;BiTNode* C = (BiTNode*)malloc(sizeof(BiTNode));C->data = 'C';C->lchild = NULL;C->rchild = NULL;BiTNode* D = (BiTNode*)malloc(sizeof(BiTNode));D->data = 'D';D->lchild = NULL;D->rchild = NULL;BiTNode* E = (BiTNode*)malloc(sizeof(BiTNode));E->data = 'E';E->lchild = NULL;E->rchild = NULL;//快速创建A,B,C,D,E5个结点A->lchild = B;A->rchild = C;B->lchild = D;B->rchild = E;

层序遍历的核心代码

使用队列来进行辅助遍历

在这里插入图片描述
  首先,遍历二叉树的第一层A先入队,遍历完第一层的时候,然后A出队,并打印A 结点。
  当A出队的时候,遍历A的左孩子,此时A的左孩子不为NULL,将左孩子B入队,然后遍历A的右孩子,此时A的右孩子不为NULL,将右孩子C入队。
在这里插入图片描述
  开始遍历第二层B结点,此时B结点已经入队,将B结点出队,并打印B结点。
  当B出队的时候,遍历B的左孩子,此时B的左孩子不为NULL,将左孩子D入队,然后遍历B的右孩子,此时B的右孩子不为NULL,将右孩子E入队。

在这里插入图片描述
  开始遍历第二层C结点,此时C结点已经入队,将C结点出队,并打印C结点。
  当C出队的时候,遍历C的左孩子,此时C的左孩子为NULL,将NULL入队,相当于没有数据入队。然后遍历C的右孩子,此时C的右孩子为NULL,将NULL入队,相当于没有数据入队。

  根据同样的道理遍历结点D,E,直到队为空,完成所有遍历。

在这里插入图片描述

核心代码

/层序遍历(存的数据)
void LevelOrder(BiTNode* T)
{//创建一个队列queue<EmpeType> q;//用于存放队头EmpeType tmp = 0;if (T == NULL)return;//入队q.push(T->data);while (!q.empty()){//取出队的头元素tmp = q.front();cout << tmp << " ";if (T->lchild != NULL){//当左孩子不为空,则入队q.push(T->lchild->data);}if (T->rchild != NULL){//当右孩子不为空,则入队q.push(T->rchild->data);}Sleep(1000);//出队if (T->lchild != NULL){T = T->lchild;}else if (T->rchild != NULL){T = T->rchild;}//弹出队头元素q.pop();}
}

源代码 队中存数据

#include<iostream>
using namespace std;
#include<queue>
#include<windows.h>typedef char EmpeType;
typedef struct BiTNode {EmpeType data;  //数据域struct BiTNode* lchild;   //左孩子struct BiTNode* rchild;   //右孩子
}BitNode;//层序遍历(存的数据)
void LevelOrder(BiTNode* T)
{//创建一个队列queue<EmpeType> q;//用于存放队头EmpeType tmp = 0;if (T == NULL)return;//入队q.push(T->data);while (!q.empty()){//取出队的头元素tmp = q.front();cout << tmp << " ";if (T->lchild != NULL){//当左孩子不为空,则入队q.push(T->lchild->data);}if (T->rchild != NULL){//当右孩子不为空,则入队q.push(T->rchild->data);}Sleep(1000);//出队if (T->lchild != NULL){T = T->lchild;}else if (T->rchild != NULL){T = T->rchild;}//弹出队头元素q.pop();}
}int main()
{//快速创建一个树BiTNode* A = (BiTNode*)malloc(sizeof(BiTNode));A->data = 'A';A->lchild = NULL;A->rchild = NULL;BiTNode* B = (BiTNode*)malloc(sizeof(BiTNode));B->data = 'B';B->lchild = NULL;B->rchild = NULL;BiTNode* C = (BiTNode*)malloc(sizeof(BiTNode));C->data = 'C';C->lchild = NULL;C->rchild = NULL;BiTNode* D = (BiTNode*)malloc(sizeof(BiTNode));D->data = 'D';D->lchild = NULL;D->rchild = NULL;BiTNode* E = (BiTNode*)malloc(sizeof(BiTNode));E->data = 'E';E->lchild = NULL;E->rchild = NULL;A->lchild = B;A->rchild = C;B->lchild = D;B->rchild = E;LevelOrder(A);return 0;
}

运行结果

在这里插入图片描述

源代码2 队中存地址

#include<iostream>
using namespace std;
#include<queue>
#include<windows.h>typedef char BitEmpeType;
typedef struct BiTNode {BitEmpeType data;struct BiTNode* lchild;struct BiTNode* rchild;
}BitNode;
typedef BiTNode* QEmpeType;//层序遍历(队中存的指针)
void LevelOrder(BiTNode* T)
{//创建一个队列queue<QEmpeType> q;//用于存放队头BitEmpeType tmp = 0;if (T == NULL)return;//入队q.push(T);while (!q.empty()){tmp = q.front()->data;//打印cout << tmp << " ";if (q.front()->lchild != NULL){q.push(q.front()->lchild);}if (q.front()->rchild != NULL){q.push(q.front()->rchild);}Sleep(1000);//出队q.pop();}
}int main()
{//快速创建一个树BiTNode* A = (BiTNode*)malloc(sizeof(BiTNode));A->data = 'A';A->lchild = NULL;A->rchild = NULL;BiTNode* B = (BiTNode*)malloc(sizeof(BiTNode));B->data = 'B';B->lchild = NULL;B->rchild = NULL;BiTNode* C = (BiTNode*)malloc(sizeof(BiTNode));C->data = 'C';C->lchild = NULL;C->rchild = NULL;BiTNode* D = (BiTNode*)malloc(sizeof(BiTNode));D->data = 'D';D->lchild = NULL;D->rchild = NULL;BiTNode* E = (BiTNode*)malloc(sizeof(BiTNode));E->data = 'E';E->lchild = NULL;E->rchild = NULL;A->lchild = B;A->rchild = C;B->lchild = D;B->rchild = E;LevelOrder(A);return 0;
}

在这里插入图片描述

觉得我回答有用的话,记得点个关注哟!谢谢支持!

这篇关于二叉树的层次遍历(配图详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/919063

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected