操作系统课程设计:银行家算法与随机分配算法(linux篇)

2024-04-19 15:38

本文主要是介绍操作系统课程设计:银行家算法与随机分配算法(linux篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include <stdio.h>
typedef struct
{
int	A;
int	B;
int	C;
}RES;
typedef int bool;
#define false 0
#define true  1
//系统中所有进程数量
#define PNUMBER	3
//最大需求矩阵
RES Max[PNUMBER];
//已分配资源数矩阵
RES Allocation[PNUMBER];
//需求矩阵
RES Need[PNUMBER];
//可用资源向量
RES Available={0,0,0};
//安全序列
int safe[PNUMBER];
void setConfig()
{
int i=0,j=0;
printf("================开始手动配置资源==================\n");
//可分配资源
scanf("%d%d%d",&Available.A,&Available.B,&Available.C);
//最大需求矩阵MAX
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);
}
//已分配矩阵Alloc
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);
}
//需求矩阵
for (i=0;i<PNUMBER;i++)
{
scanf("%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);
}
printf("================结束配置资源==================\n");
}
void loadConfig()
{
FILE *fp1;
if ((fp1=fopen("config.txt","r"))==NULL)
{
printf("没有发现配置文件,请手动输入!!!\n");
setConfig();
}
else{  
int i=0;
printf("发现配置文件,开始导入..");
//可分配资源
fscanf(fp1,"%d%d%d",&Available.A,&Available.B,&Available.C);
//最大需求矩阵MAX
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Max[i].A,&Max[i].B,&Max[i].C);
}
//已分配矩阵Alloc
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Allocation[i].A,&Allocation[i].B,&Allocation[i].C);
}
//需求矩阵
for (i=0;i<PNUMBER;i++)
{
fscanf(fp1,"%d%d%d",&Need[i].A,&Need[i].B,&Need[i].C);
}		
printf("信息导入完成.....\n");
}
}
//试探分配
void ProbeAlloc(int process,RES *res)
{
Available.A -= res->A;
Available.B -= res->B;
Available.C -= res->C;
Allocation[process].A += res->A;
Allocation[process].B += res->B;
Allocation[process].C += res->C;
Need[process].A -= res->A;
Need[process].B -= res->B;
Need[process].C -= res->C;
}
//若试探分配后进入不安全状态,将分配回滚
void RollBack(int process,RES *res)
{
Available.A += res->A;
Available.B += res->B;
Available.C += res->C;
Allocation[process].A -= res->A;
Allocation[process].B -= res->B;
Allocation[process].C -= res->C;
Need[process].A += res->A;
Need[process].B += res->B;
Need[process].C += res->C;
}
//安全性检查
bool SafeCheck()
{
RES	Work = Available;
bool		Finish[PNUMBER] = {false,false,false};
int		i;
int		j = 0;
for (i = 0; i < PNUMBER; i++)
{
//是否已检查过
if(Finish[i] == false)
{
//是否有足够的资源分配给该进程
if(Need[i].A <= Work.A && Need[i].B <= Work.B && Need[i].C <= Work.C)
{
//有则使其执行完成,并将已分配给该进程的资源全部回收
Work.A += Allocation[i].A;
Work.B += Allocation[i].B;
Work.C += Allocation[i].C;
Finish[i] = true;
safe[j++] = i;
i = -1;				//重新进行遍历
}
}
}
//如果所有进程的Finish向量都为true则处于安全状态,否则为不安全状态
for (i = 0; i < PNUMBER; i++)
{
if (Finish[i] == false)
{
return false;
}
}
return true;
}
//资源分配请求
bool request(int process,RES *res)
{
//request向量需小于Need矩阵中对应的向量
if(res->A <= Need[process].A && res->B <= Need[process].B && res->C <= Need[process].C)
{
//request向量需小于Available向量
if(res->A <= Available.A && res->B <= Available.B && res->C <= Available.C)
{
//试探分配
ProbeAlloc(process,res);
//如果安全检查成立,则请求成功,否则将分配回滚并返回失败
if(SafeCheck())
{
return true;
}
else
{
printf("安全性检查失败。原因:系统将进入不安全状态,有可能引起死锁。\n");
printf("正在回滚...\n");
RollBack(process,res);
}
}
else
{
printf("安全性检查失败。原因:请求大于可利用资源。\n");
}
}
else
{
printf("安全性检查失败。原因:请求大于需求。\n");
}
return false;
}
//输出资源分配表
void PrintTable()
{
printf("===================================资源分配表==================================\n");
printf("Process		Max          Allocation          Need          Available\n");
printf("	   A    B    C      A    B     C      A     B     C     A    B   C\n");
printf("  P0      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d    %2d   %2d  %2d\n",Max[0].A,Max[0].B,Max[0].C,Allocation[0].A,Allocation[0].B,Allocation[0].C,Need[0].A,Need[0].B,Need[0].C,Available.A,Available.B,Available.C);
printf("  P1      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d\n",Max[1].A,Max[1].B,Max[1].C,Allocation[1].A,Allocation[1].B,Allocation[1].C,Need[1].A,Need[1].B,Need[1].C);
printf("  P2      %2d   %2d   %2d     %2d   %2d    %2d     %2d    %2d    %2d\n",Max[2].A,Max[2].B,Max[2].C,Allocation[2].A,Allocation[2].B,Allocation[2].C,Need[2].A,Need[2].B,Need[2].C);
printf("===============================================================================\n");
}
//银行家算法分配
void banker()
{
int	ch;
//判断输入的是否是安全状态
PrintTable();
printf("先检查初始状态是否安全。\n");
if (SafeCheck())
{
printf("系统处于安全状态。\n");
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("系统处于不安全状态。程序将退出...\n");
printf("执行完毕。\n");
getchar();
return ;
}
//开始分配
do 
{
int		process;
RES	res;
printf("请依次输入请求分配的进程和对三类资源的请求数量:");
scanf("%d%d%d%d",&process,&res.A,&res.B,&res.C);
if(process<3 && process>=0){
if (request(process,&res))
{
printf("分配成功。\n");
PrintTable();
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("分配失败。\n");
}
printf("是否继续分配?(Y/N):");
getchar();
ch = getchar();
}else
{
printf("输入的进程号0~2\n");
ch = 'y';
}
} while (ch == 'Y' || ch == 'y');
printf("执行完毕。\n");
}
//随机分配算法执行
bool RandRequest(int process,RES *res)
{
//request向量需小于Available向量
if(res->A <= Available.A && res->B <= Available.B && res->C <= Available.C)
{
//试探分配
ProbeAlloc(process,res);
//判断进程是否执行完,执行完释放资源
if(Max[process].A <= Allocation[process].A && Max[process].B <= Allocation[process].B && Max[process].C <= Allocation[process].C)
{
printf("\nP%d 执行完毕,释放所分配的资源...\n",process);
//有则使其执行完成,并将已分配给该进程的资源全部回收
Available.A += Allocation[process].A;
Available.B += Allocation[process].B;
Available.C += Allocation[process].C;
Allocation[process].A = 0;
Allocation[process].B = 0;
Allocation[process].C = 0;
Need[process].A = Max[process].A;
Need[process].B = Max[process].B;
Need[process].C = Max[process].C;
}
return true;
}
else
{
printf("分配失败。原因:请求大于可利用资源。\n");
}
return false;
}
//随机分配
void randPatch()
{
int	ch;
//判断输入的是否是安全状态
PrintTable();
printf("先检查初始状态是否安全。\n");
if (SafeCheck())
{
printf("系统处于安全状态。\n");
printf("安全序列是{P%d,P%d,P%d}。\n",safe[0],safe[1],safe[2]);
}
else
{
printf("系统处于不安全状态。程序将退出...\n");
printf("执行完毕。\n");
getchar();
return ;
}
//开始分配
do 
{
int		process;
RES	res;
printf("请依次输入请求分配的进程和对三类资源的请求数量:");
scanf("%d%d%d%d",&process,&res.A,&res.B,&res.C);
if (RandRequest(process,&res))
{
printf("分配成功。\n");
PrintTable();
if(!SafeCheck())
{
printf("系统发生死锁。");
getchar();
getchar();	
break;
}
}
else
{
printf("分配失败。\n");
}
printf("是否继续分配?(Y/N):");
getchar();
ch = getchar();
} while (ch == 'Y' || ch == 'y');
printf("执行完毕。\n");
}
int main()
{
int x;
while(1)
{
system("clear");
printf("===============================================================================\n");
printf("\t\t\t共享资源分配与银行家算法\n");
printf("===============================================================================\n");
printf("\t\t\t 按1.导入配置信息\n");
printf("\t\t\t 按2.银行家算法\n");
printf("\t\t\t 按3.随机分配算法\n");
printf("\t\t\t 按0.退出系统\n");
printf("===============================================================================\n");
printf("您输入的是:");
scanf("%d",&x);
fflush(stdin);
system("clear");
printf("===============================================================================\n");
printf("\t\t\t共享资源分配与银行家算法");
if (x == 2)
{
printf("\t---银行家算法\n");
}else if(x==3)
{
printf("\t---随机分配算法\n");
}
printf("===============================================================================\n");
switch(x)
{
case 1: 
{
//加载配置文件
loadConfig();
//打印资源分配表
PrintTable();
getchar();
getchar();
};break;
case 2: banker();break;
case 3: randPatch(); break;
case 0: return 0;break;
default:printf("请输入0~1之间的数字\n"); 
}
}
return 0;
}

这篇关于操作系统课程设计:银行家算法与随机分配算法(linux篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/917960

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解