代码随想录算法训练营第三十八天|509. 斐波那契数,70.爬楼梯,746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天|509. 斐波那契数,70.爬楼梯,746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划(DP)

如果某一问题有很多重叠子问题,使用动态规划是最有效的。
所以动态规划中每一个状态一定是由上一个状态推导出来的

一、动态规划包含哪些问题?

1、基础问题,如斐波那契数
2、背包问题,很经典的问题
3、打家劫舍
4、股票问题
5、子序列问题,如最长子序列,编辑距离等

二、动态规划的解题步骤

1、确定dp数组(dp table)以及下标的含义,用dp数组来保存递归的结果
2、确定递推公式(核心)
3、dp数组如何初始化
4、确定遍历顺序
5、举例推导dp数组

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1给你n ,请计算 F(n)。

在这里插入图片描述

题目链接/讲解链接:
https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html

思路

按照动态规划五部曲来解题。
1、确定dp数组及下标的含义。dp[i]表示:第i个数的斐波那契数值为dp[i]
2、确定递归公式。本题给出条件:F(n) = F(n -1) + F(n -2),其中 n > 1,
所以递归公式就是dp[i] = dp[i -1] + dp[i -2]
3、初始化dp数组。本题也以给出:dp[0] = 0,dp[1] = 1
4、确定遍历的顺序。从递归公式dp[i] = dp[i -1] + dp[i -2];中可以看出,dp[i]是依赖 dp[i -1]和dp[i -2],那么遍历的顺序一定是从前到后遍历的
5、举例推导dp数组。这是一个验证的过程,例如当n为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55

解题

class Solution {
public:int fib(int n) {if (n <= 1) return n;vector<int> dp(n + 1);//0-n是有n+1个数dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};

70.爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬1或2个台阶。
你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n是一个正整数。

在这里插入图片描述

题目链接/讲解链接:
https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html

思路

动态规划五部曲。
1、确定dp数组和下标的含义。dp[i]表示:到达第i阶楼梯有dp[i]种方法。
2、确定递归公式。
dp[i]可以有两个方向推出来。
首先是dp[i -1],上i-1层楼梯,有dp[i -1]种方法,那么再一步跳一个台阶就是dp[i];
还有就是dp[i-2],上i-2层楼梯,有dp[i-2]种方法,那么再一步跳两个台阶也是dp[i]。
那么dp[i]就是 dp[i-1]与dp[i-2]之和。
所以递归公式为dp[i] = dp[i-1] + dp[i-2]。
3、初始化dp数组。
在我看来,题目中的条件:1 <= n <= 45,就不需要考虑dp[0]的情况,直接初始化dp[1]和dp[2]:
dp[1]=1,dp[2]=2。
4、确定遍历的顺序。从前往后
5、举例推导dp数组。

解题

class Solution {
public:int climbStairs(int n) {if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针vector<int> dp(n + 1);dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) { // 注意i是从3开始的dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};

题目:746. 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i]是从楼梯第 i个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为0或下标为1的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。

在这里插入图片描述

题目链接/讲解链接:
https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html

思路

五部曲:
1、确定dp数组和下标的含义。
dp[i]表示:爬到第i个台阶的最低花费是dp[i]。
2、确定递推公式。
我们如何可以到达第i个台阶?
有两种方式:
可以从第i-1个台阶往上爬一个台阶到第i个台阶,花费的总体力为从开始到达第i-1个台阶的dp[i-1]加上从第i-1个台阶爬到第i个台阶花费的体力cost[i-1];
还可以从第i-2个台阶往上爬两个台阶到第i个台阶,花费的总体力为从开始到达第i-2个台阶的dp[i-2]加上从第i-2个台阶爬到第i个台阶花费的体力cost[i-1];
dp[i]是最低花费,所以可以得到递归公式为:

dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])

3、初始化dp数组。
看一下递归公式,dp[i]由dp[i-1],dp[i-2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]和dp[1]推出。

那么 dp[0]应该是多少呢?
题目描述中说了“你可以选择从下标为0或下标为1的台阶开始爬楼梯。” 也就是第0个台阶或者第1个台阶是不花费的,但从第0个台阶或者第1个台阶往上跳的话,需要花费 cost[0]或者cost[1]。
所以初始化 dp[0] = 0,dp[1] = 0
4、确定遍历顺序。从前往后。
5、举例推导dp数组。如下图:
在这里插入图片描述

解题

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size()+1);//我们最终到达的是楼顶,楼顶的位置是在cost数组的外面,因此要比cost数组大//初始化dp数组,我们可以选择从0或者1号楼梯开始爬,因此我们到达0或者1号楼梯是不需要花费体力的,cost[0]和cost[1]表示的是已经站在0或者1号楼梯楼了,往上爬需要花费的体力dp[0]=0;dp[1]=0;for(int i =2;i<=cost.size();i++){dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[cost.size()];}
};

这篇关于代码随想录算法训练营第三十八天|509. 斐波那契数,70.爬楼梯,746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917879

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展