本地部署 Meta Llama3-8b 和 Llama3-70b

2024-04-19 09:28
文章标签 meta 部署 本地 8b 70b llama3

本文主要是介绍本地部署 Meta Llama3-8b 和 Llama3-70b,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

本地部署 Meta Llama3-8b 和 Llama3-70b

  • 0. 引言
  • 1. Meta对Llama 3的目标
  • 2. Llama 3的性能
  • 3. 下载和安装 Ollama
  • 4. 使用 Ollama 运行 Llama3

0. 引言

今天,Meta 正式介绍Meta Llama 3,Meta 开源大型语言模型的下一代产品。
这次发布包括具有80亿(8B)和700亿(70B)参数的预训练和经过指令细化训练的语言模型,可以支持广泛的应用场景。

Llama 3模型将很快在AWS、Databricks、Google Cloud、Hugging Face、Kaggle、IBM WatsonX、Microsoft Azure、NVIDIA NIM和Snowflake上提供,并得到AMD、AWS、Dell、Intel、NVIDIA和Qualcomm提供的硬件平台的支持。
Meta 致力于以负责任的方式发展Llama 3,并提供各种资源帮助他人也能负责任地使用它。这包括随Llama Guard 2、Code Shield和CyberSec Eval 2一起引入的新的信任与安全工具。
在接下来的月份里,Meta 期望推出新的功能、更长的上下文窗口、额外的模型尺寸以及提升的性能,并且Meta 将分享Llama 3的研究论文。 以Llama 3技术构建的Meta AI现已成为世界领先的AI助手之一,能够增强您的智慧并减轻您的负担——帮助您学习、完成任务、创作内容以及连接,以充分利用每一刻。

1. Meta对Llama 3的目标

在Llama 3项目中,Meta致力于打造最佳的开源模型,使其能够与当今可用的最优质的私有模型相媲美。Meta希望解决开发者的反馈,以提高Llama 3的整体帮助度,同时继续在大规模语言模型(LLMs)的负责任使用和部署方面发挥领导作用。Meta拥抱开源精神,即尽早并经常发布中间产品,以便社区能够在这些模型仍然在开发中时获得访问权限。今天Meta发布的基于文本的模型是Llama 3集合中的第一批模型。在不远的将来,Meta的目标是使Llama 3成为一个多语言和多模态的模型,具有更长的上下文记忆力,并在核心LLM能力(如推理和编程)上继续提高整体性能。

2. Llama 3的性能

Meta新的80亿和700亿参数的Llama 3模型相对于Llama 2迈出了重大飞跃,并在那些规模上建立了新的LLM模型的最先进水平。感谢Meta在预训练和后训练方面的改进,Meta的预训练模型和基于指令微调的模型是当今最好的存在于80亿和700亿参数规模的模型。Meta在后训练程序中的改进显著降低了错误拒绝率,提高了对齐度,并增加了模型回应的多样性。Meta还看到了像推理、代码生成和指令遵循等能力的显著改善,使得Llama 3更具可操作性。

在这里插入图片描述

在开发Llama 3的过程中,Meta不仅考察了模型在标准基准测试上的表现,还致力于优化真实场景下的性能。为此,Meta开发了一个新的高质量的人工评估数据集。这个评估数据集包含1800个提示,涵盖了12个关键使用案例:寻求建议、头脑风暴、分类、封闭性问题解答、编程、创意写作、信息提取、扮演角色/人格、开放性问题解答、推理、改写和摘要。为了防止Meta的模型在这个评估数据集上无意中过度拟合,即使是Meta自己的建模团队也没有访问权限。下面的图表展示了Meta的人工评估结果在这些类别和提示 across of these categories and prompts (越过这些类别和提示) aggregated results(汇总结果),与Claude Sonnet、Mistral Medium和GPT-3.5的对比。
在这里插入图片描述
人类标注者根据这套评估数据集所做的偏好排名强调了Meta的70B指令遵循模型在与同尺度竞争模型相比的现实场景中表现出色的性能。

我们预训练的模型还在那个规模内为大型语言模型(LLM)设定了新的最先进水平。
在这里插入图片描述

3. 下载和安装 Ollama

访问 https://ollama.com/,点击 “Download”,

在这里插入图片描述
根据你的操作系统,下载相应的版本,例如,“Download for Windows (Preview)”,

在这里插入图片描述
双击 “OllamaSetup.exe”,进行安装。

4. 使用 Ollama 运行 Llama3

访问 https://ollama.com/library/llama3/tags,选择你想运行的模型,例如,8b-instruct-q8_0 或者70b-instruct-q8_0

在这里插入图片描述
在这里插入图片描述

下面以8b-instruct-q8_0为例,拷贝运行命令,ollama run llama3:8b-instruct-q8_0
在这里插入图片描述
Llama3运行起来后,我们就可以和他正常聊天了。
在这里插入图片描述
完结!

这篇关于本地部署 Meta Llama3-8b 和 Llama3-70b的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917157

相关文章

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Maven项目打包时添加本地Jar包的操作步骤

《Maven项目打包时添加本地Jar包的操作步骤》在Maven项目开发中,我们经常会遇到需要引入本地Jar包的场景,比如使用未发布到中央仓库的第三方库或者处理版本冲突的依赖项,本文将详细介绍如何通过M... 目录一、适用场景说明​二、核心操作命令​1. 命令格式解析​2. 实战案例演示​三、项目配置步骤​1

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它