python安装pytorch@FreeBSD(失败)

2024-04-19 07:44

本文主要是介绍python安装pytorch@FreeBSD(失败),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pip 安装

在FreeBSD系统下pip安装pytorch,报错

Building wheels for collected packages: pytorchBuilding wheel for pytorch (setup.py) ... errorerror: subprocess-exited-with-error× python setup.py bdist_wheel did not run successfully.│ exit code: 1╰─> [6 lines of output]Traceback (most recent call last):File "<string>", line 2, in <module>File "<pip-setuptools-caller>", line 34, in <module>File "/tmp/pip-install-08n_s_43/pytorch_94d503f93a464e71b575ea1cfef78bdc/setup.py", line 15, in <module>raise Exception(message)Exception: You tried to install "pytorch". The package named for PyTorch is "torch"[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.ERROR: Failed building wheel for pytorchRunning setup.py clean for pytorch
Failed to build pytorch
ERROR: Could not build wheels for pytorch, which is required to install pyproject.toml-based projects

安装pyproject

 pip install pyproject

再pip 安装pytorch还是同样的报错:

Building wheels for collected packages: pytorch
  Building wheel for pytorch (setup.py) ... error
  error: subprocess-exited-with-error
 
  × python setup.py bdist_wheel did not run successfully.
  │ exit code: 1
  ╰─> [6 lines of output]
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "/tmp/pip-install-n_l8ufvy/pytorch_20c01d7c94e04917a97f282d03e31d92/setup.py", line 15, in <module>
          raise Exception(message)
      Exception: You tried to install "pytorch". The package named for PyTorch is "torch"
      [end of output]
 
  note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed building wheel for pytorch

查找帮助说:

运行编译过程中出现错误,并提示“Too many arguments to functions call, expected....”的信息:

遇到这种情况时,该如何解决呢?解决方法是将属性“Enable Strict Checking of objc_msgSend Calls”的值设置成“No”,即TARGETS——>项目——>Build Settings——>Apple LLVM 6.0 - Preprocessing——>Enable Strict Checking of objc_msgSend Calls

pkg安装

到pkg里发现有现成的pytorch包,于是pkg 安装:pkg install pytorch

报错冲突:

Proceed with this action? [y/N]: y
[1/1] Fetching libdca-0.0.7_1.pkg: 100%  113 KiB 115.3kB/s    00:01    
Checking integrity... done (2 conflicting)- pytorch-2.2.1 conflicts with libfmt-10.2.1 on /usr/local/include/fmt/args.h- pytorch-2.2.1 conflicts with libfmt-10.2.1 on /usr/local/include/fmt/args.h
Cannot solve problem using SAT solver, trying another plan
Checking integrity... done (0 conflicting)
Conflicts with the existing packages have been found.
One more solver iteration is needed to resolve them.
The following 2 package(s) will be affected (of 0 checked):Installed packages to be UPGRADED:libdca: 0.0.7 -> 0.0.7_1Installed packages to be REINSTALLED:pkg-1.21.1Number of packages to be upgraded: 1
Number of packages to be reinstalled: 1Proceed with this action? [y/N]: 

根据提示,是pytorch和fmt文件冲突了。删除libfmt包试试

pkg remove libfmt

删除之后再安装pytorch,会自动再安装上libfmt并继续报冲突。

pip安装python39-pytorch包

pkg install py39-pytorch

安装好之后导入torch报错:

>>> import torch
Traceback (most recent call last):File "<stdin>", line 1, in <module>File "/usr/local/lib/python3.9/site-packages/torch/__init__.py", line 237, in <module>from torch._C import *  # noqa: F403
ImportError: /usr/local/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so: Undefined symbol "_ZN4onnx7checker11check_modelERKNS_10ModelProtoEbbb"

源码编译安装

下载源代码

git clone --depth 2 https://github.com/pytorch/pytorch

设置环境变量

# 直接在终端中输入即可,重启需要重新输入
export USE_CUDA=0
export USE_DISTRIBUTED=0
export USE_MKLDNN=0
export MAX_JOBS=8

编译

cd pytorch
mkdir build
cd build
cmake ..
make -j 8

报错

--   Private Dependencies : Threads::Threads;cpuinfo;fbgemm;fp16;caffe2::openmp;foxi_loader;rt;fmt::fmt-header-only;kineto;dl
--   Public CUDA Deps.    :
--   Private CUDA Deps.   :
--   USE_COREML_DELEGATE     : OFF
--   BUILD_LAZY_TS_BACKEND   : ON
--   USE_ROCM_KERNEL_ASSERT : OFF
-- Configuring incomplete, errors occurred!

配置这里就没有过去。这个报错指向了这里

CMake Error at third_party/FP16/CMakeLists.txt:94 (ADD_SUBDIRECTORY):
  The source directory

    /home/skywalk/github/pytorch/third_party/psimd

  does not contain a CMakeLists.txt file.

原来psimd目录是空的啊,删除这个目录,然后执行:

third_party]$ git submodule update --init --recursive

问题解决。后面发现foxi 、 sleef目录也是空的,同样处理,先删除目录,再git submodule update

现在终于cmake成功了,然后make:

make install -j 8

编译到40%左右的时候报错

In file included from /home/skywalk/github/pytorch/aten/src/ATen/native/sparse/ValidateCompressedIndicesKernel.cpp:1:
/home/skywalk/github/pytorch/aten/src/ATen/native/sparse/ValidateCompressedIndicesCommon.h:93:9: error: too many arguments provided to function-like macro invocation"`0 <= crow_indices[..., 1:] - crow_indices[..., :-1] <= ncols` is not satisfied.");^
/usr/include/assert.h:52:9: note: macro '_assert' defined here
#define _assert(e)      ((void)0)^
In file included from /home/skywalk/github/pytorch/aten/src/ATen/native/sparse/ValidateCompressedIndicesKernel.cpp:1:
/home/skywalk/github/pytorch/aten/src/ATen/native/sparse/ValidateCompressedIndicesCommon.h:97:9: error: too many arguments provided to function-like macro invocation"`0 <= ccol_indices[..., 1:] - ccol_indices[..., :-1] <= nrows` is not satisfied.");^
/usr/include/assert.h:52:9: note: macro '_assert' defined here
#define _assert(e)      ((void)0)^
In file included from /home/skywalk/github/pytorch/aten/src/ATen/native/sparse/ValidateCompressedIndicesKernel.cpp:1:

更新源代码:

~/github/pytorch]$ git pull

还是这个报错

h:112:24: error: too many arguments provided to function-like macro invocation     _assert(invariant, "`0 <= row_indices < nrows` is not satisfied.");

改方法,python安装

python setup.py develop --cmake

报错:

[533/2242] Building CXX object c10/test/CMa.../c10_Scalar_test.dir/core/Scalar_test.cpp.o
FAILED: c10/test/CMakeFiles/c10_Scalar_test.dir/core/Scalar_test.cpp.o

又重新安装下,报错:

/usr/home/skywalk/github/pytorch/c10/test/core/Scalar_test.cpp:53:10: error: conversion from 'long long' to 'c10::Scalar' is ambiguous
  Scalar longlongOne = 1LL;
         ^             ~~~
/usr/home/skywalk/github/pytorch/c10/core/Scalar.h:59:7: note: candidate constructor
      DEFINE_IMPLICIT_CTOR)

ports 编译安装

 安装时会有一些库安装的比较慢,可以采取各种方法改进,比如手工下载文件然后放到/usr/ports/distfiles目录里。pkg手动安装一些依赖库,比如:

pkg install psimd
pkg install kineto
cd /usr/ports/misc/pytorch 
make install 
===>  Installing for pytorch-2.1.2
===>  Checking if pytorch is already installed
===>   Registering installation for pytorch-2.1.2
Installing pytorch-2.1.2...
pkg-static: pytorch-2.1.2 conflicts with libfmt-10.2.1 (installs files into the same place).  Problematic file: /usr/local/include/fmt/args.h
*** Error code 1Stop.
make[1]: stopped in /usr/ports/misc/pytorch
*** Error code 1

还是安装的时候报冲突

这篇关于python安装pytorch@FreeBSD(失败)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916945

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v