SPI接口的74HC595驱动数码管实现

2024-04-19 07:28

本文主要是介绍SPI接口的74HC595驱动数码管实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摸鱼记录 Day_17      (((^-^)))

review

        前边已经学习了:

        数码管显示原理:数码管动态扫描显示-CSDN博客

        且挖了个SPI的坑坑

1.  今日份摸鱼任务

学习循环移位寄存器18 串行移位寄存器原理详解_哔哩哔哩_bilibili

学习SPI接口的74HC595驱动数码管19 SPI接口的74HC595驱动数码管实验_哔哩哔哩_bilibili

了解SPI协议:SPI协议详解(图文并茂+超详细) - 知乎 (zhihu.com)

                        SPI总线协议及SPI时序图详解 - Ady Lee - 博客园 (cnblogs.com)

2.  循环移位寄存器

        四位D触发器,输入信号1001,经过四次时钟上升沿,D0-D3 1001

        DATA是串行数据,在此结构下,每个上升沿到来,都会改变D0-D3的输出

        为了正确输出四位的串转并数据

        可在红色箭头处,添加一个使能信号,对输出进行控制

此时,使用CLK、DATA、LATCH三根信号线,即可完成将串行信号转为并行信号

3.  74HC959 循环移位寄存器

        一文搞懂74HC595芯片(附使用方法)_74hc595芯片引脚图及功能-CSDN博客

        74HC595的最重要的功能就是:串行输入,并行输出。

        其次,74HC595里面有2个8位寄存器:移位寄存器、存储寄存器。

    第一个从SER送入的bit将会从 Q7 出去

   本篇在草稿呆了很多天,因为上图SHCP  STCP的画法有一定理解上的问题

    SHCP       移位寄存器的时钟输出

    STCP       存储寄存器的时钟输出

    但是在例程中

        STCP是在数据都保存后,完成一次输出,这保证了输出数据是一个完整的

        ACZ702 配套 EDA 扩展板设计用到了芯片 74HC595,该芯片的作用是移位寄存器,通过移位的方式,节省 FPGA 的管脚。FPGA 只需要输出 3 个管脚,即可达到发送数码管数据的目的,与数码管动态扫描显示-CSDN博客的传统段选位选方式相比节省了 IO 设计资源。

        3.3V供电情况下,50MHz -----》25MHz-----》12.5MHz

4. VIO  Virtual Input/Output

        关于这个IP核可以看:Vivado中VIO IP核的使用_vivado vio-CSDN博客

        本次实验,用于设定数码管的显示内容,具体设置如下:

4.  SPI接口的74HC595驱动数码管实现 (((^-^)))

                SPI(Serial Peripheral Interface),串行外围设备接口。

                SPI是一个同步的数据总线,用单独的数据线一个单独的时钟信号来保证发送端和接收端的同步

                可以参考:SPI协议详解(图文并茂+超详细) - 知乎 (zhihu.com)

        对于74HC595,本次SPI协议,是学习SCK MOSI,无需MISO,片选默认选中

4.1   design sources

hex_8  

module hex_8(input clk,
                     input reset_n,
                     input [31:0]disp_data, 

                     //8个数码管进行显示,每个显示0~F,输入格式为disp_data = 32'h12345678
                     output reg [7:0]sel,
                     output reg [7:0]seg
                     );

        //[31:0]disp_data  16hex 4*8
        //[7:0]sel 位选信号
        //[7:0]seg 段选信号

// 1kHz分频时钟 
    reg [14:0]div_clk;
    always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        div_clk <= 1'b0;
    else if(div_clk == 24999) 
        div_clk <= 1'b0;
    else 
        div_clk <= div_clk + 1'b1;
    reg disp_en;
   always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        disp_en <= 1'b0;
    else if(div_clk == 24999) 
        disp_en <= 1'b1;
    else 
        disp_en <= 1'b0;    

//  位选sel
    reg[2:0]sel_num;
    always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        sel_num <= 3'b000;
    else if(disp_en) 
        sel_num <= sel_num + 1'b1;
        
    always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        sel <= 8'b0000_0000;
    else case(sel_num) 
         0:sel <= 8'b0000_0001;
         1:sel <= 8'b0000_0010;
         2:sel <= 8'b0000_0100;
         3:sel <= 8'b0000_1000;
         4:sel <= 8'b0001_0000;
         5:sel <= 8'b0010_0000;
         6:sel <= 8'b0100_0000;
         7:sel <= 8'b1000_0000;
    endcase   
   
// 段选seg   [31:0]disp_data  16hex 4*8
    reg [3:0] dis_tmp;
    always@(posedge clk )
    case(sel_num) //高位放前面
         0:dis_tmp <= disp_data[31:28];
         1:dis_tmp <= disp_data[27:24];
         2:dis_tmp <= disp_data[23:20];
         3:dis_tmp <= disp_data[19:16];
         4:dis_tmp <= disp_data[15:12];
         5:dis_tmp <= disp_data[11:8];
         6:dis_tmp <= disp_data[7:4];
         7:dis_tmp <= disp_data[3:0];
    endcase 
    
    always@(posedge clk )
    case(dis_tmp) 
         0:seg <= 8'hc0;
         1:seg <= 8'hf9;
         2:seg <= 8'ha4;
         3:seg <= 8'hb0;
         4:seg <= 8'h99;
         5:seg <= 8'h92;
         6:seg <= 8'h82;
         7:seg <= 8'hf8;
         8:seg <= 8'h80;
         9:seg <= 8'h90;
         4'ha:seg <= 8'h88;
         4'hb:seg <= 8'h83;
         4'hc:seg <= 8'hc6;
         4'hd:seg <= 8'ha1;
         4'he:seg <= 8'h86;
         4'hf:seg <= 8'h8e;
    endcase 

endmodule

hc595_driver   //在Verilog中,不能使用数字开头命名

module hc595_driver(
                    input clk,
                    input reset_n,
                    input [15:0]data,
                    input s_en,
                    
                    output reg sh_cp,
                    output reg st_cp,
                    output reg ds
                 );

                /启动信号s_en时,保存当前data

             reg [15:0]r_data;
            always@(posedge clk)
            if(s_en)
                r_data <= data;


    parameter CNT_MAX = 2;
   // 3.3V 状态下工作于 12.5MHz   

    reg [7:0]divider_cnt;//分频计数器
    always@(posedge clk or negedge reset_n)
    if(!reset_n)
        divider_cnt <= 0;
    else if(divider_cnt == CNT_MAX - 1'b1)
        divider_cnt <= 0;
    else
        divider_cnt <= divider_cnt + 1'b1;
        
    wire sck_plus;
    assign sck_plus = (divider_cnt == CNT_MAX - 1'b1);
        
    reg [5:0]SHCP_EDGE_CNT;
    
    always@(posedge clk or negedge reset_n)
    if(!reset_n)
        SHCP_EDGE_CNT <= 0;
    else if(sck_plus)
        begin
            if(SHCP_EDGE_CNT == 6'd32) //32 16个数据,按照SH_CP上升沿、下降沿
                SHCP_EDGE_CNT <= 0;
            else
                SHCP_EDGE_CNT <= SHCP_EDGE_CNT + 1'b1;
        end
    else
        SHCP_EDGE_CNT <= SHCP_EDGE_CNT;
        
    always@(posedge clk or negedge reset_n)
    if(!reset_n)
        begin
            st_cp <= 1'b0;
            ds <= 1'b0;
            sh_cp <= 1'd0;
        end 
    else begin
        case(SHCP_EDGE_CNT)//重点就是线性序列机这部分分析啦

                        //SH_CP 移位寄存器的时钟

                        //在SH_CP上升沿  0->1 输出数据

                        //在SH_CP下降沿  1->0 改变数据
            0: begin sh_cp <= 0; st_cp <= 1'd0;ds <= r_data[15];end
            1: begin sh_cp <= 1; st_cp <= 1'd0;end
            2: begin sh_cp <= 0; ds <= r_data[14];end
            3: begin sh_cp <= 1; end
            4: begin sh_cp <= 0; ds <= r_data[13];end    
            5: begin sh_cp <= 1; end
            6: begin sh_cp <= 0; ds <= r_data[12];end    
            7: begin sh_cp <= 1; end
            8: begin sh_cp <= 0; ds <= r_data[11];end    
            9: begin sh_cp <= 1; end
            10: begin sh_cp <= 0; ds <= r_data[10];end    
            11: begin sh_cp <= 1; end
            12: begin sh_cp <= 0; ds <= r_data[9];end    
            13: begin sh_cp <= 1; end
            14: begin sh_cp <= 0; ds <= r_data[8];end    
            15: begin sh_cp <= 1; end
            16: begin sh_cp <= 0; ds <= r_data[7];end    
            17: begin sh_cp <= 1; end
            18: begin sh_cp <= 0; ds <= r_data[6];end    
            19: begin sh_cp <= 1; end
            20: begin sh_cp <= 0; ds <= r_data[5];end    
            21: begin sh_cp <= 1; end
            22: begin sh_cp <= 0; ds <= r_data[4];end    
            23: begin sh_cp <= 1; end
            24: begin sh_cp <= 0; ds <= r_data[3];end    
            25: begin sh_cp <= 1; end
            26: begin sh_cp <= 0; ds <= r_data[2];end    
            27: begin sh_cp <= 1; end
            28: begin sh_cp <= 0; ds <= r_data[1];end            
            29: begin sh_cp <= 1; end
            30: begin sh_cp <= 0; ds <= r_data[0];end
            31: begin sh_cp <= 1; end
            32: st_cp <= 1'd1;//最后拉高一下st_cp锁存器输出
            default:        
                begin
                    st_cp <= 1'b0;
                    ds <= 1'b0;
                    sh_cp <= 1'd0;
                end
        endcase
    end

endmodule

hex_top

module hex_top(
                clk,
                reset_n,
                sh_cp,
                st_cp,
                ds
                 );

    input clk;    //50M
    input reset_n;
    
    output sh_cp;
    output st_cp;
    output ds;
    
    wire [31:0]disp_data;
    wire [7:0] sel;//数码管位选(选择当前要显示的数码管)
    wire [7:0] seg;//数码管段选(当前要显示的内容)
    
    vio_0 vio_0 (
        .clk(clk), 
        .probe_out0(disp_data)  
    );
    
    hc595_driver hc595_driver(
        .clk(clk),
        .reset_n(reset_n),
        .data({seg,sel}),  //将段选与位选信号拼接在一起
        .s_en(1'b1),
        .sh_cp(sh_cp),
        .st_cp(st_cp),
        .ds(ds)
    );
    
    hex8 hex8(
        .clk(clk),
        .reset_n(reset_n),
        .en(1'b1),
        .disp_data(disp_data),
        .sel(sel),
        .seg(seg)
    );
    
endmodule

4.2  板级验证

//好啦, (((^-^)))

这篇关于SPI接口的74HC595驱动数码管实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916907

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q