动手学大模型LLM应用开发之提示词工程(Prompt Engineering)

本文主要是介绍动手学大模型LLM应用开发之提示词工程(Prompt Engineering),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 一、什么是提示词工程(Prompt Engineering)?
    • 二、Prompt 设计的原则及使用技巧
      • 原则一:编写清晰、具体的指令
        • 1、使用分隔符清晰地表示输入的不同部分
        • 2、寻求结构化的输出
        • 3、要求模型检查是否满足条件
        • 4、提供少量示例
      • 原则二:给模型时间去思考
        • 1、指定完成任务所需的步骤
        • 2、指导模型在下结论之前找出一个自己的解法
    • 三、参考资料

一、什么是提示词工程(Prompt Engineering)?

提示工程(Prompt Engineering)是一个相对较新的研究方向,用于研究如何编写和优化提示池,以便更好、更有效地使用大语言模型。
我们每一次访问大模型,给模型的输入就是 Prompt,大模型给我们的返回结果我们称之为 Completion。
在这里插入图片描述

二、Prompt 设计的原则及使用技巧

一个好的 Prompt 设计极大地决定了其能力的上限与下限。设计高效 Prompt 有两个关键原则编写清晰、具体的指令给予模型充足思考时间

原则一:编写清晰、具体的指令

1、使用分隔符清晰地表示输入的不同部分

在编写 Prompt 时,我们可以使用各种标点符号作为“分隔符”,将不同的文本部分区分开来。分隔符就像是 Prompt 中的墙,将不同的指令、上下文、输入隔开,避免意外的混淆。你可以选择用 ```,“”",< >, ,: 等做分隔符,只要能明确起到隔断作用即可。

在以下的例子中,我们给出一段话并要求 LLM 进行总结,在该示例中我们使用 ```来作为分隔符:

(1)、首先,我们调用 OpenAI 的 API ,封装一个对话函数,使用 gpt-3.5-turbo 这个模型。

import os
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv# 如果你设置的是全局的环境变量,这行代码则没有任何作用。
_ = load_dotenv(find_dotenv())client = OpenAI(# This is the default and can be omitted# 获取环境变量 OPENAI_API_KEYapi_key=os.environ.get("OPENAI_API_KEY"),# 访问api的网址,中转api需设置base_url=os.environ.get("OPENAI_BASE_URL")
)# 如果你需要通过代理端口访问,还需要做如下配置
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'
os.environ["HTTP_PROXY"] = 'http://127.0.0.1:7890'# 一个封装 OpenAI 接口的函数,参数为 Prompt,返回对应结果
def get_completion(prompt,model="gpt-3.5-turbo"):'''prompt: 对应的提示词model: 调用的模型,默认为 gpt-3.5-turbo(ChatGPT)。你也可以选择其他模型。https://platform.openai.com/docs/models/overview'''messages = [{"role": "user", "content": prompt}]# 调用 OpenAI 的 ChatCompletion 接口response = client.chat.completions.create(model=model,messages=messages,temperature=0)return response.choices[0].message.content

(2)、对比分析使用分隔符和不使用分隔符的大模型回答的效果

使用分隔符运行效果:
在这里插入图片描述
不使用分隔符运行效果:
在这里插入图片描述
总结:通过以上实验我们可以看出,使用分隔符能够有效的让大模型明白我们的用途,防止歧义。

2、寻求结构化的输出

有时候我们需要语言模型给我们一些结构化的输出,而不仅仅是连续的文本。希望大模型能够给我们返回按照某种格式组织的内容,例如 JSON、HTML 等,这种结构能够让我们方便在代码中处理。

在以下示例中,我们要求 LLM 生成三本书的标题、作者和类别,并要求 LLM 以 JSON 的格式返回给我们,为便于解析,我们指定了 JSON 的键名。
在这里插入图片描述

3、要求模型检查是否满足条件

如果任务包含不一定能满足的假设(条件),我们可以告诉模型先检查这些假设,如果不满足,则会指出并停止执行后续的完整流程。您还可以考虑可能出现的边缘情况及模型的应对,以避免意外的结果或错误发生。

在如下示例中,我们将分别给模型两段文本,分别是制作茶的步骤以及一段没有明确步骤的文本。我们将要求模型判断其是否包含一系列指令,如果包含则按照给定格式重新编写指令,不包含则回答“未提供步骤”。
在这里插入图片描述
上述示例中,模型可以很好地识别一系列的指令并进行输出。在接下来一个示例中,我们将提供给模型
没有预期指令的输入,模型将判断未提供步骤。
在这里插入图片描述

4、提供少量示例

“Few-shot” prompting(少样本提示),即在要求模型执行实际任务之前,给模型提供一两个参考样例,让模型了解我们的要求和期望的输出样式。

例如,在以下的样例中,我们先给了一个 {<学术>:<圣贤>} 对话样例,然后要求模型用同样的隐喻风格回答关于“孝顺”的问题,可以看到 LLM 回答的风格和示例里<圣贤>的文言文式回复风格是十分一致的。这就是一个 Few-shot 学习示例,能够帮助模型快速学到我们要的语气和风格。
在这里插入图片描述
总结:利用少样本样例,我们可以轻松“预热”语言模型,让它为新的任务做好准备。这是一个让模型快速上手新
任务的有效策略。

原则二:给模型时间去思考

给予语言模型充足的推理时间,是 Prompt Engineering 中一个非常重要的设计原则。提高模型的推理时间,我们可以详细的指定完成任务所需的步骤以及要求模型在下结论之前找出一个自己的解法引导模型深度思考。

1、指定完成任务所需的步骤

接下来我们将通过给定一个复杂任务,给出完成该任务的一系列步骤,来展示这一策略的效果。

首先我们描述了杰克和吉尔的故事,并给出提示词执行以下操作:

  • 首先,用一句话概括三个反引号限定的文本。
  • 第二,将摘要翻译成英语。
  • 第三,在英语摘要中列出每个名称。
  • 第四,输出包含以下键的 JSON 对象:英语摘要和人名个数。要求输出以换行符分隔。

在这里插入图片描述

2、指导模型在下结论之前找出一个自己的解法

在设计 Prompt 时,我们还可以通过明确指导语言模型进行自主思考,来获得更好的效果。
举个例子,假设我们要语言模型判断一个数学问题的解答是否正确。仅仅提供问题和解答是不够的,语
言模型可能会匆忙做出错误判断。

相反,我们可以在 Prompt 中先要求语言模型自己尝试解决这个问题,思考出自己的解法,然后再与提
供的解答进行对比,判断正确性。这种先让语言模型自主思考的方式,能帮助它更深入理解问题,做出
更准确的判断。

接下来我们会给出一个问题和一份来自学生的解答,要求模型判断解答是否正确:

在这里插入图片描述
但是注意,学生的解决方案实际上是错误的。(维护费用项100x应为10x,总费用450x应为360x)。我们可以通过指导模型先自行找出一个解法来解决这个问题。

在接下来这个 Prompt 中,我们要求模型先自行解决这个问题,再根据自己的解法与学生的解法进行对比,从而判断学生的解法是否正确。同时,我们给定了输出的格式要求。通过拆分任务、明确步骤,让
模型有更多时间思考,有时可以获得更准确的结果。
在这里插入图片描述

三、参考资料

llm-universe

这篇关于动手学大模型LLM应用开发之提示词工程(Prompt Engineering)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916138

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat