windows ubuntu 子系统:肿瘤全外篇,2. fq 数据质控,比对。

2024-04-18 08:12

本文主要是介绍windows ubuntu 子系统:肿瘤全外篇,2. fq 数据质控,比对。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先我们先下载一组全外显子测序数据。nabi sra库,随机找了一个。

来自受试者“16177_CCPM_1300019”(SRR28391647, SRR28398576)的样本“16177_CCPM_1300019_BB5”的基因组DNA配对端文库“0369547849_Illumina_P5-Popal_P7-Hefel”的Illumina随机外显子测序

下载下来,转为两个配对的fq文件。过程可参考3.windows下Ubuntu,sratoolkit软件,从ncbi的sra数据库下载数据。_sratools下载数据-CSDN博客

这样我们得到了两个配对的fq文件,如果太大,可以压缩一下。

1.质控

我们直接进行fastp进行质量控制,这时我们可以实现以下流程化。

 ls *_1.fq.gz >1
 ls *_2.fq.gz >2
paste 1 2 >  merge
sed -i "s/.fq.gz//g" merge

cat merge | while read id ; do
    fastp -i "${id}_1.fq.gz" -I "${id}_2.fq.gz" -o fastp/"${id}_clean_1.fq.gz" -O fastp/"${id}_clean_2.fq.gz" -j fastp/"${id}.json" -h fastp/"${id}.html"
done

这样我们就可以对一个目录下的样本进行批量指控了,将它们填写到脚本中,可以直接运行。

2.比对并排序

接下来,我们使用bwa mem模式对经过质控的fq文件进行比对,生成bam文件,进行排序。

cat ../merge | while read id ; do
    bwa mem -t 20 -R "@RG\tID:${id}\tLB:${id}\tPL:Illumina\tSM:${id}" /mnt/h/db/bwa.db/hg38.fa ./"${id}_clean_1.fq.gz" ./"${id}_clean_2.fq.gz" | samtools sort -@ 2 -o human/"${id}.bam"
done

        这上面的-R参数很重要。-R 接的是 Read Group的字符串信息,这是一个非常重要的信息,以@RG开头,它是用来将比对的read进行分组的。不同的组之间测序过程被认为是相互独立的,这个信息对于我们后续对比对数据进行错误率分析和Mark duplicate时非常重要。在Read Group中,有如下几个信息非常重要:

(1) ID,这是Read Group的分组ID,一般设置为测序的lane ID(不同lane之间的测序过程认为是独立的),下机数据中我们都能看到这个信息的,一般都是包含在fastq的文件名中;

(2) PL,指的是所用的测序平台,这个信息不要随便写!特别是当我们需要使用GATK进行后续分析的时候,更是如此!这是一个很多新手都容易忽视的一个地方,在GATK中,PL只允许被设置为:ILLUMINA,SLX,SOLEXA,SOLID,454,LS454,COMPLETE,PACBIO,IONTORRENT,CAPILLARY,HELICOS或UNKNOWN这几个信息。基本上就是目前市场上存在着的测序平台,当然,如果实在不知道,那么必须设置为UNKNOWN,名字方面不区分大小写。如果你在分析的时候这里没设置正确,那么在后续使用GATK过程中可能会碰到类似如下的错误:

 ERROR MESSAGE: The platform (xx) associated with read group GATKSAMReadGroupRecord @RG:xx is not a recognized platform.

这个时候你需要对比对文件的header信息进行重写,就会稍微比较麻烦。

我们上面的例子用的是PL:illumina。如果你的数据是CG测序的那么记得不要写成CG!而要写COMPLETE。

(3) SM,样本ID,同样非常重要,有时候我们测序的数据比较多的时候,那么可能会分成多个不同的lane分布测出来,这个时候SM名字就是可以用于区分这些样本。

(4) LB,测序文库的名字,这个重要性稍微低一些,主要也是为了协助区分不同的group而存在。文库名字一般可以在下机的fq文件名中找到,如果上面的lane ID足够用于区分的话,也可以不用设置LB;

除了以上这四个之外,还可以自定义添加其他的信息,不过如无特殊的需要,对于序列比对而言,这4个就足够了。这些信息设置好之后,在RG字符串中要用制表符(\t)将它们分开。

3.标记PCR重复,使用picard

cat ../merge | while read id ; do
    java -jar /mnt/h/softwore/picard/picard.jar MarkDuplicates \
    I="${id}.bam" \
    O="${id}.markup.bam" \
    M="${id}.markdup_metrics.txt"
done

  1. cat ../merge: 这个命令会将 merge 文件的内容输出到标准输出流。
  2. while read id; do ... done: 这是一个 while 循环,它会逐行读取 cat 命令的输出,并将每一行的内容赋值给变量 id
  3. java -jar /mnt/h/softwore/picard/picard.jar MarkDuplicates ...: 这是 Picard 工具的命令,用于标记重复的 reads。具体的参数解释如下:
    • -jar /mnt/h/softwore/picard/picard.jar: 指定 Picard 工具的 JAR 文件路径。
    • MarkDuplicates: 执行标记重复 reads 的操作。
    • I="${id}.bam": 输入 BAM 文件的路径和文件名,${id}.bam 表示根据当前循环的 id 变量构建的 BAM 文件名。
    • O="${id}.markup.bam": 输出标记重复 reads 后的 BAM 文件的路径和文件名,${id}.markup.bam 表示根据当前循环的 id 变量构建的标记后的 BAM 文件名。
    • M="${id}.markdup_metrics.txt": 输出标记重复 reads 后的统计信息文件的路径和文件名,${id}.markdup_metrics.txt 表示根据当前循环的 id 变量构建的统计信息文件名。

4.samtools建立索引

cat ../merge | while read id ; do
    samtools index "${id}.markup.bam" -@ 10
 done

接下来,我们就可以进入GATK4的流程了。

        这是我最近跑的一个流程,因为我在很久之前就跑过,所以这次没有很多基础信息,我稍后会分享一个资料,来对这些流程进行一个原理的解释。这个流程就是跑一下主要过程,想要建立一个流程,得要考虑很多东西,选择软件,修改添加参数啥的等,还是得有具体的项目实施。

这篇关于windows ubuntu 子系统:肿瘤全外篇,2. fq 数据质控,比对。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/914227

相关文章

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元