POJ 3264(ST实现RMQ)

2024-04-18 07:08
文章标签 实现 poj st rmq 3264

本文主要是介绍POJ 3264(ST实现RMQ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:点击打开链接


题目大意:给一个n和q,n代表有n个数,q代表q次查询。每次查询输入两个数字a,b,问你从第a个数字到第b个数字间的最大值减去最小值的值是多少。


题目思路:如果直接搜,查一次就O(n),铁定爆炸。这里线段树和ST算法都可以,线段树好像挺麻烦先学一波ST解法一会儿去学线段树,美滋滋。不过像这种单纯的求区间最值的问题,还是用ST比较好,因为ST算法预处理nlogn,查询都是O(1),非常强悍,线段树构树nlogn,查询logn,而且有很大的常数,所以本题用ST更好一些。本题代码参考kuangbin大神本题代码,非常感谢!

ST算法:

ST算法是求解RMQ问题的一种经典算法,RMQ问题就是求一个区间内的最值的问题。上面已经简单的说明了ST算法的优越性,nlogn预处理后就可以O1查询。这里讲一下他是怎么实现的。

ST算法的预处理用到了DP的思想。这里以求区间最小值为例子,mn[i][j]表示从第i个数字开始2^j个数字中的最小值大小。其动态转移方程为mn[i][j] = min(mn[i][j - 1], mn[i + (1 << j - 1)][j - 1])。介绍一下,由上,mn[i][j]是从第i个数字开始,2^j个数字钟的最小值,我们把它分为两部分,比如mn[1][2],就是从1开始2^2=4个数字,1,2,3,4中的最小值,由于j不断变大,所以此时两个数字的情况我们已经知道了,也就是求mn[1][1],mn[3][1]我们已经了解了,我们知道1 2中的最小值,3 4中的最小值,俩比一下就知道了1 2 3 4中的最小值,是不是很棒呢..

接下来说ST算法的查询,其实也是把它分成两半,要是不能正好分成两半咋办呢..没事啊,有重叠部分也不会影响结果的呀..所以比如我们求1~6的区间最小,我们可以吧1~4(mn[1][2])和3~6(mn[3][2])拿出来就可以算出来了,非常强势。怎么分呢?两个数字之间一共有y-x+1个数字,然后+1取对数log2(y-x+1)就可以啦,这样2^k就肯定可以满足把这俩分成两半后没有数字落下,很棒


以下是代码:

#include<iostream>
#include<cstdio>
#include<math.h>
using namespace std;
#define MAXN 50005
int n,q,dpMax[MAXN][20],dpMin[MAXN][20],a[MAXN];
void makeMax(){for(int i=1;i<=n;i++){dpMax[i][0]=a[i];}for(int j=1;(1<<j)<=n;j++){for(int i=1;i+(1<<j)-1<=n;i++){dpMax[i][j]=max(dpMax[i][j-1],dpMax[i+(1<<(j-1))][j-1]);}}
}
int getMax(int x,int y){int k=(int)(log(y-x+1.0)/log(2.0));return max(dpMax[x][k],dpMax[y-(1<<k)+1][k]);
}
void makeMin(){for(int i=1;i<=n;i++){dpMin[i][0]=a[i];}for(int j=1;(1<<j)<=n;j++){for(int i=1;i+(1<<j)-1<=n;i++){dpMin[i][j]=min(dpMin[i][j-1],dpMin[i+(1<<(j-1))][j-1]);}}
}
int getMin(int x,int y){int k=(int)(log(y-x+1.0)/log(2.0));return min(dpMin[x][k],dpMin[y-(1<<k)+1][k]);
}
int main(){while(~scanf("%d%d",&n,&q)){int x,y;for(int i=1;i<=n;i++){scanf("%d",&a[i]);}makeMax();makeMin();for(int i=0;i<q;i++){scanf("%d%d",&x,&y);printf("%d\n",getMax(x,y)-getMin(x,y));}}return 0;
}

这篇关于POJ 3264(ST实现RMQ)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914094

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja