OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算

2024-04-18 06:04

本文主要是介绍OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文实现Python库d和OpenCV来实现眼部闭合检测,主要用于评估用户是否眨眼。

步骤一:导入必要的库和设置参数

首先,代码导入了必要的Python库,如dlib、OpenCV和scipy。通过argparse设置了输入视频和面部标记预测器的参数。

from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
import argparse
import time
import dlib
import cv2

步骤二:定义面部关键点索引

使用OrderedDict定义了包含68个点的面部关键点,用于眼部分析。

FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))
])

步骤三:定义眼部闭合比率(EAR)函数

此函数计算眼部的纵横比,用于判断眼睛是否闭合。

def eye_aspect_ratio(eye):A = dist.euclidean(eye[1], eye[5])B = dist.euclidean(eye[2], eye[4])C = dist.euclidean(eye[0], eye[3])ear = (A + B) / (2.0 * C)return ear

步骤四:读取视频并初始化检测器

加载面部检测器和预测器,读取视频流。

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
vs = cv2.VideoCapture(args["video"])

步骤五:遍历视频帧,检测和分析

对视频的每一帧进行处理,检测人脸,提取眼部关键点,并计算EAR。

while True:frame = vs.read()[1]gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)rects = detector(gray, 0)

步骤六:闭眼检测逻辑

分析EAR值,累计闭眼帧数,并计算总的眨眼次数。

if ear < EYE_AR_THRESH:COUNTER += 1
else:if COUNTER >= EYE_AR_CONSEC_FRAMES:TOTAL += 1COUNTER = 0

步骤七:显示结果

在视频帧上显示眨眼次数和当前EAR值,同时绘制眼部区域。

cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)

完整代码

#导入工具包
from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
import argparse
import time
import dlib
import cv2FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))
])# http://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf
def eye_aspect_ratio(eye):# 计算距离,竖直的A = dist.euclidean(eye[1], eye[5])B = dist.euclidean(eye[2], eye[4])# 计算距离,水平的C = dist.euclidean(eye[0], eye[3])# ear值ear = (A + B) / (2.0 * C)return ear# 输入参数
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor",default="shape_predictor_68_face_landmarks.dat",help="path to facial landmark predictor")
ap.add_argument("-v", "--video", type=str, default="test.mp4",help="path to input video file")
args = vars(ap.parse_args())# 设置判断参数
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 3# 初始化计数器
COUNTER = 0
TOTAL = 0# 检测与定位工具
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])# 分别取两个眼睛区域
(lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"]
(rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"]# 读取视频
print("[INFO] starting video stream thread...")
vs = cv2.VideoCapture(args["video"])
#vs = FileVideoStream(args["video"]).start()
time.sleep(1.0)def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coords# 遍历每一帧
while True:# 预处理frame = vs.read()[1]if frame is None:break(h, w) = frame.shape[:2]width=1200r = width / float(w)dim = (width, int(h * r))frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 检测人脸rects = detector(gray, 0)# 遍历每一个检测到的人脸for rect in rects:# 获取坐标shape = predictor(gray, rect)shape = shape_to_np(shape)# 分别计算ear值leftEye = shape[lStart:lEnd]rightEye = shape[rStart:rEnd]leftEAR = eye_aspect_ratio(leftEye)rightEAR = eye_aspect_ratio(rightEye)# 算一个平均的ear = (leftEAR + rightEAR) / 2.0# 绘制眼睛区域leftEyeHull = cv2.convexHull(leftEye)rightEyeHull = cv2.convexHull(rightEye)cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)# 检查是否满足阈值if ear < EYE_AR_THRESH:COUNTER += 1else:# 如果连续几帧都是闭眼的,总数算一次if COUNTER >= EYE_AR_CONSEC_FRAMES:TOTAL += 1# 重置COUNTER = 0# 显示cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.imshow("Frame", frame)key = cv2.waitKey(10) & 0xFFif key == 27:breakvs.release()
cv2.destroyAllWindows()

在这里插入图片描述

这篇关于OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/913946

相关文章

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性