Python零基础从小白打怪升级中~~~~~~~多线程

2024-04-18 02:36

本文主要是介绍Python零基础从小白打怪升级中~~~~~~~多线程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线程安全和锁

一、全局解释器锁

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。

GIL全称global interpreter lock,全局解释器锁。

每个线程在执行的时候都需要先获取GIL,保证同一时刻只有一个线程可以执行代码,即同一时刻只有一个线程使用CPU。在CPython中,每一个Python线程执行前都需要去获得GIL锁 ,获得该锁的线程才可以执行,没有获得的只能等待 ,当具有GIL锁的线程运行完成后,其他等待的线程就会去争夺GIL锁,这就造成了,在Python中使用多线程,但同一时刻下依旧只有一个线程在运行 ,所以Python多线程其实并不是「并行」的,而是「并发」 。

看到下图,图中是Python中GIL的工作实例,其中有3个线程,线程与线程之间是顺序执行的 ,每个线程开始执行时都会去获得GIL,防止其他线程线程运行 ,每执行完一段时间后,就会释放GIL,让别的线程可以去争夺执行权限,如果自己本身也没有执行完,则本身也会参与这次争夺 。

image.png

# 多线程的代码
import threading, timedef add(n):sum = 0while sum < n:sum += 1print(f'sum:{sum}')if __name__ == '__main__':start = time.time()n = 500000000t1 = threading.Thread(target=add, args=[n // 2])t2 = threading.Thread(target=add, args=[n // 2])t1.start()t2.start()t1.join()t2.join()print('run time: %s' % str(time.time() - start))

image.png

# 单线程的代码
import timedef add(n):sum = 0while sum < n:sum += 1print(f'sum:{sum}')if __name__ == '__main__':start = time.time()add(500000000)print('run time: %s' % str(time.time() - start))

image.png

总结

  • GIL解决方法:

  • 使用其他语言写的python解释器(不推荐,还是用官方CPython好)
    eg:Jython(java);IronPython(.net);pypy(Python)

  • 不使用多线程,使用多进程-进程里加协程实现多任务来充分利用多核CPU (推荐)

  • 即使存在GIL 在有IO等待操作的程序中,还是多线程快,当然没有资源等待的还是单线程快(科学计算,累加等等)

但需要注意的是线程有了GIL后并不意味着使用Python多线程时不需要考虑线程安全 ,「GIL的存在是为了方便使用C语言编写CPython解释器的编写者,而顶层使用Python时依旧要考虑线程安全」 。

二、线程安全

当多个线程同时访问一个对象时,不管如何计算,如果调用这个对象的行为都可以获得正确的结果,那就称这个对象时线程安全的。 如果出现了“脏数据”。则线程不安全。

脏数据 :产生脏数据的原因是,当一个线程在对数据进行修改时,修改到一半时另一个线程读取了未经修改的数据并进行修改。如何避免脏数据的产生呢?一个办法就是用join方法,即先让一个线程执行完毕再执行另一个线程。但这样的本质是把多线程变成了单线程,失去了多线程的意义。另一个办法就是用线程锁。

import threadingg_number = 0def hello():global g_numberfor i in range(1000000):  # 加的次数越大越容易出现资源竞争问题g_number += 1print(f'thd1运行的结果为:{g_number}')def world():global g_numberfor i in range(1000000):g_number += 1print(f'thd2运行的结果为:{g_number}')if __name__ == '__main__':thd1 = threading.Thread(target=hello)thd2 = threading.Thread(target=world)thd1.start()thd2.start()# 阻塞等待thd1.join()thd2.join()print(g_number)  # 结果随机 可能小于等于2000000

三、锁

锁是Python提供给我们能够自行操控线程切换的一种手段,使用锁可以让线程的切换变的有序。

一旦线程的切换变的有序后,各个线程之间对数据的访问、修改就变的可控,所以若要保证线程安全,就必须使用锁。

threading模块中提供了5种最常见的锁,下面是按照功能进行划分:

  • 同步锁:lock(一次只能放行一个)
  • 递归锁:rlock(一次只能放行一个)
  • 条件锁:condition(一次可以放行任意个)
  • 事件锁:event(一次全部放行)
  • 信号量锁:semaphore(一次可以放行特定个)

1、同步锁

同一时刻的一个进程下的一个线程只能使用一个cpu,要确保这个线程下的程序在一段时间内被cpu执,那么就要用到同步锁。只需要在对公共数据的操作前后加上上锁和释放锁的操作即可。

死锁: 指两个或两个以上的线程或进程在执行程序的过程中,因争夺资源而相互等待的一个现象。

import threadingg_number = 0
lock = threading.Lock()def hello():global g_numberfor i in range(1000000):  # 加的次数越大越容易出现资源竞争问题with lock:g_number += 1print(f'thd1运行的结果为:{g_number}')def world():global g_numberfor i in range(1000000):with lock:g_number += 1print(f'thd2运行的结果为:{g_number}')if __name__ == '__main__':thd1 = threading.Thread(target=hello)thd2 = threading.Thread(target=world)thd1.start()thd2.start()# 阻塞等待thd1.join()thd2.join()print(g_number)  # 结果随机 可能小于等于2000000

2、递归同步锁

在同步锁的基础上可以做到连续重复使用多次acquire()后再重复使用多次release()的操作,但是一定要注意加锁次数和解锁次数必须一致,否则也将引发死锁现象。

递归锁RLock:它内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。

3、条件锁

条件锁是在递归锁的基础上增加了能够暂停线程运行的功能。并且我们可以使用wait()与notify()来控制线程执行的个数。

注意:条件锁可以自由设定一次放行几个线程。

import threadingcurrentRunThreadNumber = 0
maxSubThreadNumber = 10def task():global currentRunThreadNumberthread_name = threading.currentThread().namewith condLock:print("线程开始启动,并马上进入等待状态 : %s" % thread_name)condLock.wait()  # 暂停线程运行、等待唤醒print("线程唤醒了,开始运行后面的代码 : %s" % thread_name)currentRunThreadNumber += 1if __name__ == "__main__":condLock = threading.Condition()for i in range(maxSubThreadNumber):subThreadIns = threading.Thread(target=task)subThreadIns.start()while currentRunThreadNumber < maxSubThreadNumber:notifyNumber = int(input("请输入要唤醒几个线程:"))with condLock:condLock.notify(notifyNumber)  # 放行print("main thread run end")

4、事件锁

事件锁是基于条件锁来做的,它与条件锁的区别在于一次只能放行全部,不能放行任意个数量的子线程继续运行。

我们可以将事件锁看为红绿灯,当红灯时所有子线程都暂停运行,并进入“等待”状态,当绿灯时所有子线程都恢复“运行”。

image.png

import threadingmaxSubThreadNumber = 3def task():thread_name = threading.currentThread().nameprint("线程开始启动,并马上进入等待状态 : %s" % thread_name)eventLock.wait()  # 暂停运行,等待绿灯print("第一次绿灯打开,线程往下走:%s" % thread_name)eventLock.wait()  # 暂停运行,等待绿灯print("第二次绿灯打开,线程往下走:%s" % thread_name)if __name__ == "__main__":eventLock = threading.Event()for i in range(maxSubThreadNumber):subThreadIns = threading.Thread(target=task)subThreadIns.start()eventLock.set()  # 设置为绿灯eventLock.clear()  # 设置为红灯eventLock.set()

5、信号量锁

Semaphore()

信号量锁也是根据条件锁来做的,它与条件锁和事件锁的区别如下:

  • 条件锁:一次可以放行任意个处于“等待”状态的线程
  • 事件锁:一次可以放行全部的处于“等待”状态的线程
  • 信号量锁:通过规定,成批的放行特定(指定)个处于“上锁”状态的线程
import threading
import timemaxSubThreadNumber = 6def task():thread_name = threading.currentThread().namewith semaLock:print("线程获得锁,开始运行: %s" % thread_name)time.sleep(3)if __name__ == "__main__":semaLock = threading.Semaphore(2)for i in range(maxSubThreadNumber):subThreadIns = threading.Thread(target=task)subThreadIns.start()

这篇关于Python零基础从小白打怪升级中~~~~~~~多线程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913540

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: