代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II

本文主要是介绍代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 491.递增子序列
    • 思路
    • 伪代码
    • CPP代码
    • 优化代码
  • 46.全排列
    • 思路
    • 伪代码
    • CPP代码
  • 47.全排列II
    • CPP代码

491.递增子序列

力扣题目链接

文章链接:491.递增子序列

视频连接:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列

状态:今天没时间了,随便记录一下!

思路

本题与90.子集II非常类似。

也就是本题的递增子序列有要求子集,然后还要去重,但是:本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!

这里用[4, 7, 6, 7]进行对比。

伪代码

  • 递归函数参数:求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex)
    
  • 终止条件:本题类似求子集问题,也要遍历树形结构找每一个结点,所以和78.子集类似,要遍历树形结构找每一个结点。其实可以不加终止条件,startIndex每次都会加1,并不会无限递归。本题收集结果有所不同,题目要求递增子序列大小至少为2,我们不要加return这样就可以取数上的所有结点啦:

if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

同一父结点下的同层上使用过的元素就不能再使用了!这里我们使用set来进行去重。

使用set只记录本层元素是否重复使用,新的一层uset都会被重新定义(清空)。

unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();
}

CPP代码

// 版本一
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,要取树上的节点}unordered_set<int> uset; // 使用set对本层元素进行去重for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

优化代码

这里数值范围较小,我们使用数组来做哈希可以对代码进行优化:

程序运行的时候对unordered_set 频繁的insertunordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。

// 版本二
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);}int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| used[nums[i] + 100] == 1) {continue;}used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

46.全排列

46.全排列
文章链接:46.全排列

视频连接:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列

状态:今天没时间了,随便记录一下!

思路

排列与组合(包括分割和子集都近似于组合问题,所以我们总是处理前对其进行排序)相比,排列是有顺序的。总而言之排列是强调元素顺序的

全排列问题的树形结构如图:

从树形结构可以看出,我们每次都是从头开始,即使元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

这里我们会使用used数组,记录此时path里都有哪些元素使用啦,一个排列里一个元素只能使用一次。

伪代码

  • 递归函数参数:正如上文中所讲的,我们需要一个used数组
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件:

    • 上图中可以看出,叶子结点收获结果,那么如何判断到了叶子结点呢,本题的判断很简单,path数组的大小达到和nums数组一样大的时候,就说明找到了全排列
    // 此时说明找到了一组
    if (path.size() == nums.size()) {result.push_back(path);return;
    }
    
  • 单层搜索的逻辑:

    • 排列问题和之前写的组合、切割、子集问题最大的不同就是不用startindex来指明遍历的位置了,因为我们每次都要从头开始搜索,正如上文描述的那样。这里我们使用used。
    for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;
    }
    

CPP代码

class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}vector<vector<int>> permute(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};

47.全排列II

力扣题目链接

文章链接:47.全排列II

视频连接:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II

状态:今天没时间了,随便记录一下!

这题很有意思,这里给定的是一个包含了重复数字的序列,要返回所有不重复的全排列。很明显,需要去重

那么我们这里要判断了,是树层去重呢,还是树枝去重?

![在这里插入图片描述]()
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}

我们在40.组合总和II、90.子集II中已经详细论述过去重逻辑的写法,这里直接给出代码

CPP代码

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝nums[i - 1]使用过// used[i - 1] == false,说明同一树层nums[i - 1]使用过// 如果同一树层nums[i - 1]使用过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素

这篇关于代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913479

相关文章

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

统一返回JsonResult踩坑的记录

《统一返回JsonResult踩坑的记录》:本文主要介绍统一返回JsonResult踩坑的记录,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录统一返回jsonResult踩坑定义了一个统一返回类在使用时,JsonResult没有get/set方法时响应总结统一返回