代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II

本文主要是介绍代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 491.递增子序列
    • 思路
    • 伪代码
    • CPP代码
    • 优化代码
  • 46.全排列
    • 思路
    • 伪代码
    • CPP代码
  • 47.全排列II
    • CPP代码

491.递增子序列

力扣题目链接

文章链接:491.递增子序列

视频连接:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列

状态:今天没时间了,随便记录一下!

思路

本题与90.子集II非常类似。

也就是本题的递增子序列有要求子集,然后还要去重,但是:本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!

这里用[4, 7, 6, 7]进行对比。

伪代码

  • 递归函数参数:求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex)
    
  • 终止条件:本题类似求子集问题,也要遍历树形结构找每一个结点,所以和78.子集类似,要遍历树形结构找每一个结点。其实可以不加终止条件,startIndex每次都会加1,并不会无限递归。本题收集结果有所不同,题目要求递增子序列大小至少为2,我们不要加return这样就可以取数上的所有结点啦:

if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

同一父结点下的同层上使用过的元素就不能再使用了!这里我们使用set来进行去重。

使用set只记录本层元素是否重复使用,新的一层uset都会被重新定义(清空)。

unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();
}

CPP代码

// 版本一
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,要取树上的节点}unordered_set<int> uset; // 使用set对本层元素进行去重for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

优化代码

这里数值范围较小,我们使用数组来做哈希可以对代码进行优化:

程序运行的时候对unordered_set 频繁的insertunordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。

// 版本二
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);}int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| used[nums[i] + 100] == 1) {continue;}used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

46.全排列

46.全排列
文章链接:46.全排列

视频连接:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列

状态:今天没时间了,随便记录一下!

思路

排列与组合(包括分割和子集都近似于组合问题,所以我们总是处理前对其进行排序)相比,排列是有顺序的。总而言之排列是强调元素顺序的

全排列问题的树形结构如图:

从树形结构可以看出,我们每次都是从头开始,即使元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

这里我们会使用used数组,记录此时path里都有哪些元素使用啦,一个排列里一个元素只能使用一次。

伪代码

  • 递归函数参数:正如上文中所讲的,我们需要一个used数组
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件:

    • 上图中可以看出,叶子结点收获结果,那么如何判断到了叶子结点呢,本题的判断很简单,path数组的大小达到和nums数组一样大的时候,就说明找到了全排列
    // 此时说明找到了一组
    if (path.size() == nums.size()) {result.push_back(path);return;
    }
    
  • 单层搜索的逻辑:

    • 排列问题和之前写的组合、切割、子集问题最大的不同就是不用startindex来指明遍历的位置了,因为我们每次都要从头开始搜索,正如上文描述的那样。这里我们使用used。
    for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;
    }
    

CPP代码

class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}vector<vector<int>> permute(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};

47.全排列II

力扣题目链接

文章链接:47.全排列II

视频连接:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II

状态:今天没时间了,随便记录一下!

这题很有意思,这里给定的是一个包含了重复数字的序列,要返回所有不重复的全排列。很明显,需要去重

那么我们这里要判断了,是树层去重呢,还是树枝去重?

![在这里插入图片描述]()
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}

我们在40.组合总和II、90.子集II中已经详细论述过去重逻辑的写法,这里直接给出代码

CPP代码

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝nums[i - 1]使用过// used[i - 1] == false,说明同一树层nums[i - 1]使用过// 如果同一树层nums[i - 1]使用过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素

这篇关于代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913479

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型