灰度图像--图像分割 区域分割之分水岭算法

2024-04-17 23:38

本文主要是介绍灰度图像--图像分割 区域分割之分水岭算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


学习DIP第60天
转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro
更多图像处理机器学习内容请访问最新网站www.face2ai.com
#开篇废话
今天已经是第60篇博客了,这六十篇每一篇平均要两天左右,所以,在过去的四个月学到了这么多知识,想想挺开心,但学的越多就会发现自己不会的越多。从小学到大学,这么多年一直以学习为主要工作但学习又有很多阶段,对于通用知识,比如小学的语文数学此观点不适用,对于一些专业性较强的知识,感觉会有两个很主要的阶段,感觉自己目前处于入门阶段,由于数字图像涉及数学的知识较多,还有信号和信息论的知识,所以,感觉还是比较难学科,不然招聘公司也不会一年几十万的养着图像处理工程师。
下面的图是本人的一点点见解,只是自己总结的,没有实践,也没有科学依据,不喜勿喷:

![这里写图片描述](https://img-blog.csdn.net/20150311094312086)

我感觉图像处理能分成三个阶段,或者更多,第一阶段的人很多,听说这行前景好或者工资高的人,多半会学习点图像的知识,比如彩色空间啊,了解下OpenCV啊等等,还有一些属于纯属上课被逼无奈的,比如我们学校就对电子信息类专业和通信类开数字图像处理这门课,而且我当时考试还挂了。。。。这部分大家会接触一些名词,一些简单算法,有用心的同学可能会实现下代码,这阶段风景不错,而且好多名词可以拿来忽悠HR或者忽悠导师,得到一份不错的工作,或者做点导师的项目。
这个阶段多半使用现成的函数库,了解了基本算法或者听别人说一些算法,自己来跑结果,这个阶段Matlab的用户量较大。
第1阶段后半期也就是平台期,这个阶段是做了一段时间有一定算法使用基础和代码能力的工程师,多半在各企业负责最底层的图像算法编写,在他们面前是一座大山,和一个路口,继续做图像还是转管理。
如果继续选择图像,就会面临一个峭壁,具体是算法底层的数学,说的数学,总是困难的,爬这个峭壁的动力可以是挣更多的钱,或者爱好,因为一旦到达阶段2,就能成为首席图像处理工程师,到任何需要图像处理的公司,都能够独当一面,这些人已经到了不缺钱的地步,而且在行业内一定有一定名气。
第二阶段的一旦到达,可以说是事业的平稳期,或者巅峰,不缺钱,还能独自决定一些技术层面上的事,指挥手下阶段1的员工工作,这个阶段面临的也是一个选择,就是靠这个吃一辈子饭,绝对没问题,再有就是向更高的境界冲击。
第三阶段没有尽头,因为能促使进入阶段三的动力只有爱好,这部分挣的钱可能没有阶段2挣的多,而且难度更大,看不到尽头,所以这部分属于探索阶段,在这个阶段上看到的一些,都能推动未来学科的发展,所以这个阶段的人多半是在实验室和数学中忙碌一生,然后几十年后出现在各大论文和教材中。
以上属于个人猜想或者愚见,想法幼稚,仅供参考。
#算法描述
今天废话太多了,哈哈,其实上面的可以新开一篇博客单独写出来,但觉得,首先自己年轻视野狭窄,第二水平太低,所以当做废话夹在本文中。
内容迁移至:http://www.face2ai.com/DIP-7-10-灰度图像-图像分割-区域分割之分水岭算法/

http://www.tony4ai.com/DIP-7-10-灰度图像-图像分割-区域分割之分水岭算法/

这篇关于灰度图像--图像分割 区域分割之分水岭算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913181

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

Nginx实现前端灰度发布

《Nginx实现前端灰度发布》灰度发布是一种重要的策略,它允许我们在不影响所有用户的情况下,逐步推出新功能或更新,通过灰度发布,我们可以测试新版本的稳定性和性能,下面就来介绍一下前端灰度发布的使用,感... 目录前言一、基于权重的流量分配二、基于 Cookie 的分流三、基于请求头的分流四、基于请求参数的分