【机器学习300问】72、神经网络的隐藏层数量和各层神经元节点数如何影响模型的表现?

本文主要是介绍【机器学习300问】72、神经网络的隐藏层数量和各层神经元节点数如何影响模型的表现?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        评估深度学习的模型的性能依旧可以用偏差和方差来衡量。它们反映了模型在预测过程中与理想情况的偏离程度,以及模型对数据扰动的敏感性。我们简单回顾一下什么是模型的偏差和方差?

一、深度学习模型的偏差和方差

  • 偏差:衡量模型预测结果的期望值与真实值之间的差异;
  • 方差:度量模型预测结果的变动性或离散程度;

如果模型在训练集上都表现得很差,就说模型高偏差(High Bias),此时模型欠拟合。

如果模型在验证集上表现很差在测试集上表现很好,就说模型高方差(High Variance),此时模型过拟合。

第一种情况第二种情况第三种情况第四种情况
训练集误差1%15%15%0.5%
验证集误差11%16%30%1%
基准误差1假设 \approx 0 %
模型性能评估1高方差高偏差

高偏差

高方差

低偏差

低方差

基准误差2假设 \approx 14 %
模型性能评估2/

低偏差

低方差

高方差/

        如果您想加深对这一知识点的理解,不妨看看我之前的文章哦:

【机器学习300问】27、高偏差与高方差是什么?他们对评估机器学习模型起何作用?icon-default.png?t=N7T8http://t.csdnimg.cn/I0USG 

二、神经网络的深度和节点数对模型性能有何影响?

(1) 隐藏层层数(模型复杂度)

        隐藏层的个数就是神经网络的深度,他是一个重要的超参数。

  • 高偏差: 如果神经网络的隐藏层数过少或深度不足,模型的复杂度相对较低,可能无法充分捕捉数据中的复杂非线性关系和高级抽象特征。这样的模型倾向于产生简单的决策边界,对训练数据的拟合程度不足,表现为高偏差。具体来说,深度较浅的网络可能无法挖掘到数据中深层次的依赖关系,导致模型对训练数据的学习过于粗糙,预测结果与真实值存在较大偏差。

  • 高方差: 反之,如果神经网络的隐藏层数过多,深度过大,模型的复杂度极高。这种情况下,网络可能过度拟合训练数据,学习到许多特定于训练集的细节和噪声,而不是数据中更稳定、更具泛化性的特征。过深的网络容易陷入对训练数据的局部最小值,对新样本的微小变化异常敏感,从而导致在测试集上表现出很大的方差。

(2)神经元节点数(模型容量)

        各层神经元节点数也是影响模型性能的关键超参数。

  • 高偏差: 当神经网络各层的神经元节点数过少时,模型的容量有限,可能无法充分表示数据的复杂性。节点数不足会导致网络的表达能力受限,无法捕捉到数据中的细微差异和复杂关系,造成模型过于简单化,无法适应数据分布,从而产生高偏差。如同一个容量有限的容器,只能装下数据的粗略轮廓,而忽视了重要的细节信息。

  • 高方差: 相反,若各层神经元节点数过多,模型的容量过大,网络有很强的拟合复杂函数的能力。此时,模型容易过拟合训练数据,对噪声和偶然性特征过于敏感,记忆了训练集中的个体特例而非一般规律。过大的节点数使得网络在训练时能够轻易地“记住”每个训练样本,但在面对未见过的数据时,由于过度适应训练细节,模型的预测结果波动性增大,即表现出高方差。

(3)总结

  • 神经网络层数少、神经元节点少,可能导致高偏差(欠拟合)
  • 神经网络层数多,神经元节点多,可能导致高方差(过拟合)

这篇关于【机器学习300问】72、神经网络的隐藏层数量和各层神经元节点数如何影响模型的表现?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/912763

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.