【机器学习300问】72、神经网络的隐藏层数量和各层神经元节点数如何影响模型的表现?

本文主要是介绍【机器学习300问】72、神经网络的隐藏层数量和各层神经元节点数如何影响模型的表现?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        评估深度学习的模型的性能依旧可以用偏差和方差来衡量。它们反映了模型在预测过程中与理想情况的偏离程度,以及模型对数据扰动的敏感性。我们简单回顾一下什么是模型的偏差和方差?

一、深度学习模型的偏差和方差

  • 偏差:衡量模型预测结果的期望值与真实值之间的差异;
  • 方差:度量模型预测结果的变动性或离散程度;

如果模型在训练集上都表现得很差,就说模型高偏差(High Bias),此时模型欠拟合。

如果模型在验证集上表现很差在测试集上表现很好,就说模型高方差(High Variance),此时模型过拟合。

第一种情况第二种情况第三种情况第四种情况
训练集误差1%15%15%0.5%
验证集误差11%16%30%1%
基准误差1假设 \approx 0 %
模型性能评估1高方差高偏差

高偏差

高方差

低偏差

低方差

基准误差2假设 \approx 14 %
模型性能评估2/

低偏差

低方差

高方差/

        如果您想加深对这一知识点的理解,不妨看看我之前的文章哦:

【机器学习300问】27、高偏差与高方差是什么?他们对评估机器学习模型起何作用?icon-default.png?t=N7T8http://t.csdnimg.cn/I0USG 

二、神经网络的深度和节点数对模型性能有何影响?

(1) 隐藏层层数(模型复杂度)

        隐藏层的个数就是神经网络的深度,他是一个重要的超参数。

  • 高偏差: 如果神经网络的隐藏层数过少或深度不足,模型的复杂度相对较低,可能无法充分捕捉数据中的复杂非线性关系和高级抽象特征。这样的模型倾向于产生简单的决策边界,对训练数据的拟合程度不足,表现为高偏差。具体来说,深度较浅的网络可能无法挖掘到数据中深层次的依赖关系,导致模型对训练数据的学习过于粗糙,预测结果与真实值存在较大偏差。

  • 高方差: 反之,如果神经网络的隐藏层数过多,深度过大,模型的复杂度极高。这种情况下,网络可能过度拟合训练数据,学习到许多特定于训练集的细节和噪声,而不是数据中更稳定、更具泛化性的特征。过深的网络容易陷入对训练数据的局部最小值,对新样本的微小变化异常敏感,从而导致在测试集上表现出很大的方差。

(2)神经元节点数(模型容量)

        各层神经元节点数也是影响模型性能的关键超参数。

  • 高偏差: 当神经网络各层的神经元节点数过少时,模型的容量有限,可能无法充分表示数据的复杂性。节点数不足会导致网络的表达能力受限,无法捕捉到数据中的细微差异和复杂关系,造成模型过于简单化,无法适应数据分布,从而产生高偏差。如同一个容量有限的容器,只能装下数据的粗略轮廓,而忽视了重要的细节信息。

  • 高方差: 相反,若各层神经元节点数过多,模型的容量过大,网络有很强的拟合复杂函数的能力。此时,模型容易过拟合训练数据,对噪声和偶然性特征过于敏感,记忆了训练集中的个体特例而非一般规律。过大的节点数使得网络在训练时能够轻易地“记住”每个训练样本,但在面对未见过的数据时,由于过度适应训练细节,模型的预测结果波动性增大,即表现出高方差。

(3)总结

  • 神经网络层数少、神经元节点少,可能导致高偏差(欠拟合)
  • 神经网络层数多,神经元节点多,可能导致高方差(过拟合)

这篇关于【机器学习300问】72、神经网络的隐藏层数量和各层神经元节点数如何影响模型的表现?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/912763

相关文章

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio