llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战

本文主要是介绍llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章列表:

  1. llama-factory SFT系列教程 (一),大模型 API 部署与使用
  2. llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署
  3. llama-factory SFT系列教程 (三),chatglm3-6B 命名实体识别实战

简介

利用 llama-factory 框架,基于 chatglm3-6B 模型 做命名实体识别任务;

本次实验的数据集、lora微调脚本、部署、推理、预测、评估的等相关资料已全部上传到 modelscope 平台;
output: 文件夹下,为 lora 微调的权重;
点击查看 https://modelscope.cn/datasets/jieshenai/llm_clue_ner2020/files
在这里插入图片描述

装包

git clone https://github.com/hiyouga/LLaMA-Factory.git
# conda create -n llama_factory python=3.10
# conda activate llama_factory
cd LLaMA-Factory
pip install -e .[metrics]

在 LLaMA-Factory 文件夹下,创建一个脚本文件夹,用来存放本次实验的数据集和脚本文件

mkdir glm_ner_scripts
cd glm_ner_scripts
git clone https://www.modelscope.cn/datasets/jieshenai/llm_clue_ner2020.git

使用 git clone 下载数据集和脚本文件

数据集

该数据集参考的 DeepKE的数据格式;

DeepKE 的代码不够通用,本文使用 llama-factory 做命名实体识别和通用的数据集格式,更方便读者学习与使用;

数据里已发布在 modelscope 平台上;

数据集示例:

{"instruction": "你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。 schema: ['address', 'book', 'company', 'game', 'government', 'movie']", "input": "浙商银行企业信贷部叶老桂博士则从另一个角度对五道门槛进行了解读。叶老桂认为,对目前>国内商业银行而言,", "output": "{\"address\": [], \"book\": [], \"company\": [\"浙商银行\"], \"game\": [], \"government\": [], \"movie\": []}"
}

将 命名实体识别任务转换为 序列到序列的生成任务;

LLaMA-Factory/data/dataset_info.json 添加自定义数据集的配置信息;
llm_ner: 数据集名;
file_name: 文件名;
file_sha1: 利用 sha1sum train.json 计算文件的sha1值;
在这里插入图片描述

  "llm_ner2_train":{"file_name": "../glm_ner_scripts/llm_clue_ner2020/llm_ner_dataset2/train.json","file_sha1": "8dffb2d6e55ef8916f95ff7ccbcfbfe9d6865d12"},

lora 微调

bash train.sh

train.sh 脚本内容如下:

CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path ZhipuAI/chatglm3-6b \
--dataset_dir ../../data \
--dataset llm_ner2_train \
--template chatglm3 \
--finetuning_type lora \
--lora_target query_key_value \
--output_dir ./output/output_train \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_strategy epoch \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--fp16
  • dataset_dir: llama-factory data/dataset_info.json 的文件夹路径;
    因为自定义数据集的配置信息,写在 dataset_info.json 文件中;
  • dataset : 在 data/dataset_info.json 中,配置的自定义数据集的名字;

在output文件夹中可找到训练过程中损失值图:

在这里插入图片描述

train.json 有18000条数据,跑了大概2个小时以上;
24G 显存的显卡恰好可以跑;

API 部署

使用训练完成的 LoRA 权重进行推理;
bash lora_infer.sh

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \--model_name_or_path ZhipuAI/chatglm3-6b \--adapter_name_or_path output/output_train/checkpoint-2250 \--template chatglm3 \--finetuning_type lora

部署
在这里插入图片描述

训练完成的模型lora权重, 在 modelscope 的 output 文件夹下;

使用 req.ipynb 调用API 接口,与大模型进行交互测试;
点击查看 req.ipynb https://modelscope.cn/datasets/jieshenai/llm_clue_ner2020/file/view/master/req.ipynb?status=1

大模型预测

使用 llm_ner_dataset2/dev.json 而不用 test.json;因为 test.json 的 label 标注有问题,读者忽略 test.json 这个文件即可;

req.ipynb 文本中,提供了如下功能:

  • request 针对大模型 API 发送请求,并处理大模型生成文本的代码;
  • 将大模型 生成的结果与原始数据集拼接在一起保存到 llm_predict2.json;

有待改进:
笔者一次发送一个请求,让大模型处理,大模型一次只能处理一行文本;
如果大模型能一次处理一个batch的文本,就可大大提高推理速度,该功能笔者没有实现;
欢迎读者提供相关的见解👏👏👏

评估

llm_predict2.json 的样例如下:

{"instruction": "{'instruction': '你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。', 'schema': ['name', 'organization', 'position', 'scene'], 'input': '来自非洲的原料供应商莫檀壁表示“一些新入行的投资客往往被蓄意炒作的一些‘老前辈’、‘行业专家’、‘'}", "input": "", "output": "{\"name\": [\"莫檀壁\"], \"organization\": [], \"position\": [\"原料供应商\", \"行业专家\"], \"scene\": []}", "predict": {"name": ["莫檀壁"], "organization": [], "position": ["投资客", "专家"], "scene": []}
}
  • output: 真实的label;
  • predict:大模型预测的值;

在上一步预测 的llm_predict2.json 上评估大模型微调的效果;

使用 eval2.ipynb 进行评估实验,评估结果如下:
点击查看 eval2.ipynb https://modelscope.cn/datasets/jieshenai/llm_clue_ner2020/file/view/master/eval2.ipynb?status=1
在这里插入图片描述

缺少数据集

在这里插入图片描述
modelscope 会删除数据集,一言难尽;里面有一个压缩包备份,读者可以关注一下;

这篇关于llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/912624

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性