5种语言实现 | 使用Dijkstra算法从起点到所有节点找到最短路径

本文主要是介绍5种语言实现 | 使用Dijkstra算法从起点到所有节点找到最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编辑:东岸因为@一点人工一点智能

5种语言实现 | 使用Dijkstra算法从起点到所有节点找到最短路径C++\x5cJava\x5cPython\x5cC#\x5cJavascript,五种语言实现使用Dijkstra算法从起点到所有节点找到最短路径icon-default.png?t=N7T8https://mp.weixin.qq.com/s/6NAClr51zR_GLZGyKkr32A给定一个带权重的图和图中的一个起点,找到该点到图中所有其他节点的最短路径。

注意:给定的图中不包含任何负边。

示例:

Input: src = 0, the graph is shown below.

Output: 0 4 12 19 21 11 9 8 14
Explanation: The distance from 0 to 1 = 4.
The minimum distance from 0 to 2 = 12. 0->1->2
The minimum distance from 0 to 3 = 19. 0->1->2->3
The minimum distance from 0 to 4 = 21. 0->7->6->5->4
The minimum distance from 0 to 5 = 11. 0->7->6->5
The minimum distance from 0 to 6 = 9. 0->7->6
The minimum distance from 0 to 7 = 8. 0->7
The minimum distance from 0 to 8 = 14. 0->1->2->8

01 使用邻接矩阵的Dijkstra算法

思路是以给定起点为根节点生成一个最短路径树(SPT)。维护一个包含两个集合的邻接矩阵,

· 一个集合包含在最短路径树中的节点,

· 另一个集合包含尚未包含在最短路径树中的节点。

算法的每个步骤中,找到一个在另一个集合中(尚未包含的集合)且距离起点最小的节点。

1.1 算法

* 创建一个集合sptSet(最短路径树集合),用于跟踪包含在最短路径树中的节点,即已计算和完成的距离起点的最小距离。初始时,此集合为空。

* 为输入图中的所有节点赋予一个距离值。将所有距离值初始化为无穷大。将起点的距离值设置为0,以便首先选择它。

当sptSet未包含所有节点时

· 选择一个不在sptSet中且具有最小距离值的节点u。

· 将u包含到sptSet中。

· 然后更新u的所有邻接节点的距离值。

        - 为了更新距离值,迭代遍历所有邻接节点。

        - 对于每个邻接节点v,如果u到v的距离值(从起点开始)加上边权重小于v的距离值,则更新v的距离值。

注意:我们使用一个布尔数组sptSet[]来表示包含在SPT中的节点集合。如果值sptSet[v]为true,则表示节点v包含在SPT中,否则不包含。数组dist[]用于存储所有节点的最短距离值。

1.2 Dijkstra算法的示例

为了理解Dijkstra算法,我们来看一个图,并找到从起点到所有节点的最短路径。

考虑下面的图和起点src = 0。

步骤1:

· 集合sptSet最初为空,节点的距离值分别是{0, INF, INF, INF, INF, INF, INF, INF},其中INF表示无穷大。

· 现在选择具有最小距离值的节点。选择节点0,并将其包含在sptSet中。因此,sptSet变为{0}。将0包含在sptSet中后,更新其相邻节点的距离值。

· 节点0的相邻节点是1和7。将1和7的距离值更新为4和8。

以下子图显示了节点及其距离值,只显示具有有限距离值的节点。包含在最短路径树中的节点以绿色显示。

步骤2:

· 选择具有最小距离值且尚未包含在SPT中(不在sptSet中)的节点。选择节点1并将其添加到sptSet中。

· 因此,sptSet现在变为{0, 1}。更新节点1的相邻节点的距离值。

· 节点2的距离值变为12。

步骤3:

· 选择具有最小距离值且尚未包含在SPT中(不在sptSet中)的节点。选择节点7。因此,sptSet现在变为{0, 1, 7}。

· 更新节点7的相邻节点的距离值。节点6和8的距离值变为有限值(分别为15和9)。

步骤4:

· 选择具有最小距离值且尚未包含在SPT中(不在sptSet中)的节点。选择节点6。因此,sptSet现在变为{0, 1, 7, 6}。

· 更新节点6的相邻节点的距离值。节点5和8的距离值被更新。

图片

我们重复上述步骤,直到sptSet包含了给定图的所有节点。最后,我们得到以下最短路径树(SPT)。

图片

02 代码实现

C++语言:

// C++ Program to find Dijkstra's shortest path using
// priority_queue in STL
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f// iPair ==> Integer Pair
typedef pair<int, int> iPair;// This class represents a directed graph using
// adjacency list representation
class Graph {int V; // No. of vertices// In a weighted graph, we need to store vertex// and weight pair for every edgelist<pair<int, int> >* adj;public:Graph(int V); // Constructor// function to add an edge to graphvoid addEdge(int u, int v, int w);// prints shortest path from svoid shortestPath(int s);
};// Allocates memory for adjacency list
Graph::Graph(int V)
{this->V = V;adj = new list<iPair>[V];
}void Graph::addEdge(int u, int v, int w)
{adj[u].push_back(make_pair(v, w));adj[v].push_back(make_pair(u, w));
}// Prints shortest paths from src to all other vertices
void Graph::shortestPath(int src)
{// Create a priority queue to store vertices that// are being preprocessed. This is weird syntax in C++.// Refer below link for details of this syntax// https://www.geeksforgeeks.org/implement-min-heap-using-stl/priority_queue<iPair, vector<iPair>, greater<iPair> >pq;// Create a vector for distances and initialize all// distances as infinite (INF)vector<int> dist(V, INF);// Insert source itself in priority queue and initialize// its distance as 0.pq.push(make_pair(0, src));dist[src] = 0;/* Looping till priority queue becomes empty (or alldistances are not finalized) */while (!pq.empty()) {// The first vertex in pair is the minimum distance// vertex, extract it from priority queue.// vertex label is stored in second of pair (it// has to be done this way to keep the vertices// sorted distance (distance must be first item// in pair)int u = pq.top().second;pq.pop();// 'i' is used to get all adjacent vertices of a// vertexlist<pair<int, int> >::iterator i;for (i = adj[u].begin(); i != adj[u].end(); ++i) {// Get vertex label and weight of current// adjacent of u.int v = (*i).first;int weight = (*i).second;// If there is shorted path to v through u.if (dist[v] > dist[u] + weight) {// Updating distance of vdist[v] = dist[u] + weight;pq.push(make_pair(dist[v], v));}}}// Print shortest distances stored in dist[]printf("Vertex Distance from Source\n");for (int i = 0; i < V; ++i)printf("%d \t\t %d\n", i, dist[i]);
}// Driver's code
int main()
{// create the graph given in above figureint V = 9;Graph g(V);// making above shown graphg.addEdge(0, 1, 4);g.addEdge(0, 7, 8);g.addEdge(1, 2, 8);g.addEdge(1, 7, 11);g.addEdge(2, 3, 7);g.addEdge(2, 8, 2);g.addEdge(2, 5, 4);g.addEdge(3, 4, 9);g.addEdge(3, 5, 14);g.addEdge(4, 5, 10);g.addEdge(5, 6, 2);g.addEdge(6, 7, 1);g.addEdge(6, 8, 6);g.addEdge(7, 8, 7);// Function callg.shortestPath(0);return 0;
}

Java语言:

import java.util.*;class Graph {private int V;private List<List<iPair>> adj;Graph(int V) {this.V = V;adj = new ArrayList<>();for (int i = 0; i < V; i++) {adj.add(new ArrayList<>());}}void addEdge(int u, int v, int w) {adj.get(u).add(new iPair(v, w));adj.get(v).add(new iPair(u, w));}void shortestPath(int src) {PriorityQueue<iPair> pq = new PriorityQueue<>(V, Comparator.comparingInt(o -> o.first));int[] dist = new int[V];Arrays.fill(dist, Integer.MAX_VALUE);pq.add(new iPair(0, src));dist[src] = 0;while (!pq.isEmpty()) {int u = pq.poll().second;for (iPair v : adj.get(u)) {if (dist[v.first] > dist[u] + v.second) {dist[v.first] = dist[u] + v.second;pq.add(new iPair(dist[v.first], v.first));}}}System.out.println("Vertex Distance from Source");for (int i = 0; i < V; i++) {System.out.println(i + "\t\t" + dist[i]);}}static class iPair {int first, second;iPair(int first, int second) {this.first = first;this.second = second;}}
}public class Main {public static void main(String[] args) {int V = 9;Graph g = new Graph(V);g.addEdge(0, 1, 4);g.addEdge(0, 7, 8);g.addEdge(1, 2, 8);g.addEdge(1, 7, 11);g.addEdge(2, 3, 7);g.addEdge(2, 8, 2);g.addEdge(2, 5, 4);g.addEdge(3, 4, 9);g.addEdge(3, 5, 14);g.addEdge(4, 5, 10);g.addEdge(5, 6, 2);g.addEdge(6, 7, 1);g.addEdge(6, 8, 6);g.addEdge(7, 8, 7);g.shortestPath(0);}
}

Python 3 语言:

import heapq# iPair ==> Integer Pair
iPair = tuple# This class represents a directed graph using
# adjacency list representation
class Graph:def __init__(self, V: int): # Constructorself.V = Vself.adj = [[] for _ in range(V)]def addEdge(self, u: int, v: int, w: int):self.adj[u].append((v, w))self.adj[v].append((u, w))# Prints shortest paths from src to all other verticesdef shortestPath(self, src: int):# Create a priority queue to store vertices that# are being preprocessedpq = []heapq.heappush(pq, (0, src))# Create a vector for distances and initialize all# distances as infinite (INF)dist = [float('inf')] * self.Vdist[src] = 0while pq:# The first vertex in pair is the minimum distance# vertex, extract it from priority queue.# vertex label is stored in second of paird, u = heapq.heappop(pq)# 'i' is used to get all adjacent vertices of a# vertexfor v, weight in self.adj[u]:# If there is shorted path to v through u.if dist[v] > dist[u] + weight:# Updating distance of vdist[v] = dist[u] + weightheapq.heappush(pq, (dist[v], v))# Print shortest distances stored in dist[]for i in range(self.V):print(f"{i} \t\t {dist[i]}")# Driver's code
if __name__ == "__main__":# create the graph given in above figureV = 9g = Graph(V)# making above shown graphg.addEdge(0, 1, 4)g.addEdge(0, 7, 8)g.addEdge(1, 2, 8)g.addEdge(1, 7, 11)g.addEdge(2, 3, 7)g.addEdge(2, 8, 2)g.addEdge(2, 5, 4)g.addEdge(3, 4, 9)g.addEdge(3, 5, 14)g.addEdge(4, 5, 10)g.addEdge(5, 6, 2)g.addEdge(6, 7, 1)g.addEdge(6, 8, 6)g.addEdge(7, 8, 7)g.shortestPath(0)

C#语言:

using System;
using System.Collections.Generic;// This class represents a directed graph using
// adjacency list representation
public class Graph
{
private const int INF = 2147483647;private int V;
private List<int[]>[] adj;public Graph(int V)
{ // No. of verticesthis.V = V;// In a weighted graph, we need to store vertex// and weight pair for every edgethis.adj = new List<int[]>[V];for (int i = 0; i < V; i++){this.adj[i] = new List<int[]>();}
}public void AddEdge(int u, int v, int w)
{this.adj[u].Add(new int[] { v, w });this.adj[v].Add(new int[] { u, w });
}// Prints shortest paths from src to all other vertices
public void ShortestPath(int src)
{// Create a priority queue to store vertices that// are being preprocessed.SortedSet<int[]> pq = new SortedSet<int[]>(new DistanceComparer());// Create an array for distances and initialize all// distances as infinite (INF)int[] dist = new int[V];for (int i = 0; i < V; i++){dist[i] = INF;}// Insert source itself in priority queue and initialize// its distance as 0.pq.Add(new int[] { 0, src });dist[src] = 0;/* Looping till priority queue becomes empty (or alldistances are not finalized) */while (pq.Count > 0){// The first vertex in pair is the minimum distance// vertex, extract it from priority queue.// vertex label is stored in second of pair (it// has to be done this way to keep the vertices// sorted by distance)int[] minDistVertex = pq.Min;pq.Remove(minDistVertex);int u = minDistVertex[1];// 'i' is used to get all adjacent vertices of a// vertexforeach (int[] adjVertex in this.adj[u]){// Get vertex label and weight of current// adjacent of u.int v = adjVertex[0];int weight = adjVertex[1];// If there is a shorter path to v through u.if (dist[v] > dist[u] + weight){// Updating distance of vdist[v] = dist[u] + weight;pq.Add(new int[] { dist[v], v });}}}// Print shortest distances stored in dist[]Console.WriteLine("Vertex Distance from Source");for (int i = 0; i < V; ++i)Console.WriteLine(i + "\t" + dist[i]);
}private class DistanceComparer : IComparer<int[]>
{public int Compare(int[] x, int[] y)
{if (x[0] == y[0]){return x[1] - y[1];}return x[0] - y[0];}
}
}public class Program
{ 
// Driver Code
public static void Main()
{// create the graph given in above figureint V = 9;Graph g = new Graph(V);// making above shown graphg.AddEdge(0, 1, 4);g.AddEdge(0, 7, 8);g.AddEdge(1, 2, 8);g.AddEdge(1, 7, 11);g.AddEdge(2, 3, 7);g.AddEdge(2, 8, 2);g.AddEdge(2, 5, 4);g.AddEdge(3, 4, 9);g.AddEdge(3, 5, 14);g.AddEdge(4, 5, 10);g.AddEdge(5, 6, 2);g.AddEdge(6, 7, 1);g.AddEdge(6, 8, 6);g.AddEdge(7, 8, 7);g.ShortestPath(0);
}
}// this code is contributed by bhardwajji

Javascript:

<script> 
// javascript Program to find Dijkstra's shortest path using
// priority_queue in STL
const INF = 2147483647;// This class represents a directed graph using
// adjacency list representation
class Graph {constructor(V){// No. of verticesthis.V = V;// In a weighted graph, we need to store vertex// and weight pair for every edgethis.adj = new Array(V);for(let i = 0; i < V; i++){this.adj[i] = new Array();}}addEdge(u, v, w){this.adj[u].push([v, w]);this.adj[v].push([u, w]);}// Prints shortest paths from src to all other verticesshortestPath(src){// Create a priority queue to store vertices that// are being preprocessed. This is weird syntax in C++.// Refer below link for details of this syntax// https://www.geeksforgeeks.org/implement-min-heap-using-stl/let pq = [];// Create a vector for distances and initialize all// distances as infinite (INF)let dist = new Array(V).fill(INF);// Insert source itself in priority queue and initialize// its distance as 0.pq.push([0, src]);dist[src] = 0;/* Looping till priority queue becomes empty (or alldistances are not finalized) */while (pq.length > 0) {// The first vertex in pair is the minimum distance// vertex, extract it from priority queue.// vertex label is stored in second of pair (it// has to be done this way to keep the vertices// sorted distance (distance must be first item// in pair)let u = pq[0][1];pq.shift();// 'i' is used to get all adjacent vertices of a// vertexfor(let i = 0; i < this.adj[u].length; i++){// Get vertex label and weight of current// adjacent of u.let v = this.adj[u][i][0];let weight = this.adj[u][i][1];// If there is shorted path to v through u.if (dist[v] > dist[u] + weight) {// Updating distance of vdist[v] = dist[u] + weight;pq.push([dist[v], v]);pq.sort((a, b) =>{if(a[0] == b[0]) return a[1] - b[1];return a[0] - b[0];});}}}// Print shortest distances stored in dist[]document.write("Vertex Distance from Source");for (let i = 0; i < V; ++i)document.write(i, "   ", dist[i]);}
}// Driver's code
// create the graph given in above figure
let V = 9;
let g = new Graph(V);// making above shown graph
g.addEdge(0, 1, 4);
g.addEdge(0, 7, 8);
g.addEdge(1, 2, 8);
g.addEdge(1, 7, 11);
g.addEdge(2, 3, 7);
g.addEdge(2, 8, 2);
g.addEdge(2, 5, 4);
g.addEdge(3, 4, 9);
g.addEdge(3, 5, 14);
g.addEdge(4, 5, 10);
g.addEdge(5, 6, 2);
g.addEdge(6, 7, 1);
g.addEdge(6, 8, 6);
g.addEdge(7, 8, 7);// Function call
g.shortestPath(0);// The code is contributed by Nidhi goel. 
</script>

输出:

时间复杂度:O(V^2)

辅助空间:O(V)

注意:

· 该代码计算了最短距离,但没有计算路径信息。可以创建一个父节点数组,在更新距离时更新父节点数组,并使用它来显示从源到不同节点的最短路径。

· 该实现的时间复杂度是O(V^2)。如果使用邻接表表示输入图,可以借助二叉堆将其减少为O(E * log V)。更多详情,请参阅邻接表表示的Dijkstra算法。

· Dijkstra算法对具有负权重环的图不起作用。

03 Dijkstra算法的应用

谷歌地图使用Dijkstra算法显示起点和目标点之间的最短距离。

在计算机网络中,Dijkstra算法是各种路由协议的基础,例如OSPF(开放最短路径优先)和IS-IS(中间系统到中间系统)。

交通和交通管理系统使用Dijkstra算法来优化交通流量,减少拥堵,并计划车辆的最高效路径。

航空公司使用Dijkstra算法来规划最小化燃料消耗、减少旅行时间的飞行路径。

Dijkstra算法在电子设计自动化中用于在集成电路和大规模集成(VLSI)芯片上进行路由连接。

这篇关于5种语言实现 | 使用Dijkstra算法从起点到所有节点找到最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/912332

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC