【论文速读】| 大语言模型是边缘情况模糊测试器:通过FuzzGPT测试深度学习库

本文主要是介绍【论文速读】| 大语言模型是边缘情况模糊测试器:通过FuzzGPT测试深度学习库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

本次分享论文为:Large Language Models are Edge-Case Fuzzers: Testing Deep Learning Libraries via FuzzGPT

基本信息

原文作者:Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, Lingming Zhang

作者单位:伊利诺伊大学厄巴纳-香槟分校

关键词:模糊测试、深度学习库、大语言模型、程序合成

原文链接:

https://arxiv.org/abs/2304.02014v1

开源代码:暂无

论文要点

论文简介:这篇论文提出了一种名为FuzzGPT的新方法,它利用大语言模型(LLMs)生成非常规程序来测试深度学习(DL)库。通过对历史中引发错误的程序的研究,FuzzGPT能够生成更有效的测试程序,检测出多达76个错误,其中49个被确认为新的错误,包括11个高优先级错误或安全漏洞。

研究目的:为了解决传统fuzzing技术在自动生成有效测试程序方面存在的挑战,本文通过整合大语言模型的生成能力,提出了一个新颖的方法来增强软件测试的效率和覆盖范围,尤其是针对复杂的深度学习库。

研究贡献:

1.本文首次提出利用大语言模型(LLMs)生成异常输入程序以提高模糊测试的有效性。FuzzGPT作为一种新型的自动化模糊测试工具,能够根据历史错误触发程序或直接遵循人类指令生成不寻常的测试程序,适用于多种应用领域。

2.研究者们实现了FuzzGPT的三种变体:少样本学习、零样本学习和微调,基于Codex和CodeGen等先进的GPT风格模型,并特别开发了直接利用ChatGPT指令跟随能力的零样本变体。

3.通过在PyTorch和TensorFlow两个深度学习库上的广泛测试,FuzzGPT在提高代码覆盖率方面显著优于现有的TitanFuzz工具,并成功发现了49个新错误,包括多个高优先级的安全漏洞。

引言

深度学习(DL)已在多个领域得到广泛应用。然而,由于这些应用依赖于复杂的DL库,库中的错误可能会导致严重后果,包括对安全关键应用的影响。尽管传统Fuzzing方法很有力,但在生成适用于DL库的输入程序时,它面临多个挑战。这些程序不仅需要符合编程语言的语法和语义,还必须满足构建有效计算图的张量和操作符约束。TitanFuzz是一个先前的尝试,它通过利用预训练的大语言模型来生成有效的DL程序。然而,这些模型通常只生成常规程序,不足以探索库的边缘行为。与此相对,FuzzGPT引入了一种新策略,通过对大语言模型(LLMs)进行“微调”和“上下文学习”,生成更多的异常程序,以探索DL库中未覆盖的路径。

研究背景

在开发深度学习(DL)应用时,常用的库如PyTorch和TensorFlow功能虽强大,但仍存在许多潜在错误。针对这些库的fuzzing研究通常集中在模型级和API级。然而,现有方法,无论是复用和变异现有种子模型,还是依赖手动编写的规范,均仅能覆盖有限的API和程序模式。为此,FuzzGPT被提出以通过自动化技术生成更多样化的输入程序,从而提升Fuzzing的效果和效率。

研究方法

FuzzGPT 通过结合大语言模型(LLM)的能力和历史错误触发程序的数据集,创新地生成能够发现新缺陷的非常规测试程序。首先,从开源软件库中收集和分析已知的错误触发程序,以构建一个训练数据集。然后,使用这些数据对LLM进行微调和上下文学习,以增强其生成异常测试输入的能力。通过这种方式,FuzzGPT不仅学习了编程语言的语法和语义,还学习了深度学习计算图的构建约束,从而有效地提高了软件测试的覆盖率和效率。此外,该方法还特别强调了在生成过程中利用历史错误数据的重要性,以更好地捕捉可能的错误触发模式。

图片

实现方法

FuzzGPT是基于大语言模型(LLM),如GPT和Codex,利用这些模型学习历史错误触发代码片段来自动化生成测试代码的工具。首先,从开源项目中抓取bug报告和错误代码,以建立包含错误触发代码的数据集。然后,采用微调(Fine-tuning)和上下文学习(In-context Learning)方法来调整LLM,从而使其能够生成可能触发深度学习库潜在错误的代码。在微调过程中,通过梯度下降法调整模型参数,以最大化预测错误触发代码的准确性。上下文学习则是通过分析历史错误示例来优化生成逻辑,无需更改模型权重。这两种策略共同增强了模型在寻找新bug方面的实际应用能力。

研究评估

在实际测试中,FuzzGPT对两个流行的深度学习库PyTorch和TensorFlow进行了广泛评估。与现有模糊测试技术TitanFuzz相比,FuzzGPT在测试覆盖率和错误检测方面都表现出显著优势。FuzzGPT成功识别了总共76个错误,其中49个是之前未被发现的新错误,包括11个高优先级错误或安全漏洞。此外,FuzzGPT利用从大语言模型生成的测试输入,在PyTorch和TensorFlow中实现了比TitanFuzz更高的代码覆盖率。这些结果有效证实了FuzzGPT结合历史错误数据和大语言模型策略在提升软件质量和安全性方面的实用性和效率。

结果分析

FuzzGPT的测试结果不仅证实了其在深度学习库模糊测试中的有效性,还展示了其优越性。通过对两个主流深度学习库——PyTorch和TensorFlow——的广泛测试,FuzzGPT在错误检测和测试覆盖率方面均优于现有技术。它成功检测了76个错误,其中49个是新发现的,包括11个高优先级错误或安全漏洞。相比于TitanFuzz等传统模糊测试工具,FuzzGPT在发现新代码路径和触发边缘案例方面表现更为卓越。这些成果突显了FuzzGPT结合大语言模型和历史错误数据进行模糊测试的独特优势,有效地提高了深度学习库的测试深度和广度。

图片

论文结论

通过整合大语言模型和历史错误触发程序,FuzzGPT在深度学习库的模糊测试领域显著提升了效能。这项研究不仅揭示了多个之前未识别的错误,包括关键的安全漏洞,而且还显著提高了代码覆盖率,从而证明了其在探测深度学习库潜在缺陷的有效性。此外,FuzzGPT展示了大语言模型在自动生成高风险测试输入方面的巨大潜力,为该领域的未来研究和实践提供了新的方向和方法,特别是在提升软件测试的自动化和智能化水平方面。

原作者:论文解读智能体

润色:Fancy

校对:小椰风

图片

这篇关于【论文速读】| 大语言模型是边缘情况模糊测试器:通过FuzzGPT测试深度学习库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911910

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达