【智能算法】鸭群算法(DSA)原理及实现

2024-04-17 10:36

本文主要是介绍【智能算法】鸭群算法(DSA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2021年,Zhang等人受到自然界鸭群觅食行为启发,提出了鸭群算法(Duck Swarm Algorithm, DSA)。

2.算法原理

2.1算法思想

DSA基于自然界鸭群觅食过程,主要分为两个阶段:寻找食物(探索阶段)和群体觅食(开发阶段)。DSA需要遵循两条规则

  • 寻找食物时,搜索能力强的鸭子会靠近食物来源的中心,这样会吸引其他个体靠近,更新后的位置也会受到附近个体的影响 (领导者-跟随者类型)
  • 觅食时,所有个体都接近食物,下一个位置受到邻近个体和食物位置或领导鸭的影响

在这里插入图片描述

2.2算法过程

寻找食物

鸭群逐渐分散并开始寻找食物:
X i t + 1 = { X i t + μ ⋅ X i t ⋅ s i g n ( r − 0.5 ) , P > r a n d X i t + C F 1 ⋅ ( X l e a d e r t − X i t ) + C F 2 ⋅ ( X j t − X i t ) , P < r a n d (1) \boldsymbol{X}_i^{t+1}=\begin{cases}\boldsymbol{X}_i^t+\mu\cdot\boldsymbol{X}_i^t\cdot sign(r-0.5),P>rand\\\boldsymbol{X}_i^t+CF_1\cdot(\boldsymbol{X}_{leader}^t-\boldsymbol{X}_i^t)+CF_2\cdot(\boldsymbol{X}_j^t-\boldsymbol{X}_i^t),P<rand\end{cases}\tag{1} Xit+1={Xit+μXitsign(r0.5),P>randXit+CF1(XleadertXit)+CF2(XjtXit),P<rand(1)
在这里插入图片描述

其中,sign函数表示对寻找食物的方向。整体来看(1)式可以看作个体周围扰动(P>rand),领域个体和最优个体引导(P<rand),平衡因子为:
μ = K ⋅ ( 1 − t / t max ⁡ ) K = sin ⁡ ( 2 ⋅ r a n d ) + 1 (2) \mu=K\cdot(1-t / t_{\max} )\\K=\sin(2\cdot rand )+1\tag{2} μ=K(1t/tmax)K=sin(2rand)+1(2)
在这里插入图片描述

平衡因子通过参数K控制,整体呈线性递减。PS:这里可以改进为非线性因子

群体觅食

鸭群寻找食物后,即有足够的食物可以满足鸭群的觅食:
X i t + 1 = { X i t + μ ⋅ ( X l e a d e r t − X i t ) , f ( X i t ) > f ( X i t + 1 ) X i t + K F 1 ⋅ ( X l e a d e r t − X i t ) + K F 2 ⋅ ( X k t − X j t ) , e l s e (3) \boldsymbol{X}_i^{t+1}=\begin{cases}\boldsymbol{X}_i^t+\mu\cdot(\boldsymbol{X}_{leader}^t-\boldsymbol{X}_i^t),f(X_i^t)>f(X_i^{t+1})\\\boldsymbol{X}_i^t+KF_1\cdot(\boldsymbol{X}_{leader}^t-\boldsymbol{X}_i^t)+KF_2\cdot(\boldsymbol{X}_k^t-\boldsymbol{X}_j^t),else\end{cases}\tag{3} Xit+1={Xit+μ(XleadertXit),f(Xit)>f(Xit+1)Xit+KF1(XleadertXit)+KF2(XktXjt),else(3)
参数可以表述为:
C F i o r K F i ← 1 F P ⋅ r a n d ( 0 , 1 ) ( i = 1 , 2 ) (4) CF_i\mathrm{~or~}KF_i\leftarrow\frac1{FP}\cdot rand(0,1)(i=1,2)\tag{4} CFi or KFiFP1rand(0,1)(i=1,2)(4)
其中,FP为常数0.618。
在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试DSA性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2005-F7
在这里插入图片描述

Frieddamn检验

在这里插入图片描述

探索与开发

在这里插入图片描述

种群空间搜索图

在这里插入图片描述

4.参考文献

[1] Zhang M, Wen G, Yang J. Duck swarm algorithm: A novel swarm intelligence algorithm. arXiv 2021[J]. arXiv preprint arXiv:2112.13508.

这篇关于【智能算法】鸭群算法(DSA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911565

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到