如何使用OSI七层模型的思路进行Linux网络问题排障?

2024-04-17 10:04

本文主要是介绍如何使用OSI七层模型的思路进行Linux网络问题排障?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在运维工作中,我们可能经常遇到诸如服务器无法远程连接、网站无法访问等各种网络问题。此时你是否想过,我们常背的OSI七层模型,能在处理这样的实际问题中发挥什么样的作用呢?

基于OSI架构的方法论,我们可以使用自下而上的方法论来进行网络故障排查。

什么是OSI模型

OSI,即开放系统互连(Open Systems Interconnection),该模型是一个概念框架,它将网络通信的功能划分为七个不同的层级。简单来说,OSI标准定义了不同计算机系统之间如何进行通信。七层模型自下而上分别为:
OSI七层模型

如何运用OSI模型排查网络故障

假设有一个托管在Linux服务器上的网站无法正常工作,那么我们可以使用OSI模型对问题进行有效分解。

物理层

物理层是最底层,这一层的关键组件是电缆、光纤等物理介质。在这个层次上,我们可以检查电源供应及设备状态,查看接口统计信息。常用的命令如ifconfigip link show

[root@ecs-91176055 ~]#  ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500inet 192.168.0.4  netmask 255.255.255.0  broadcast 192.168.0.255inet6 fe80::f816:3eff:fe03:78e  prefixlen 64  scopeid 0x20<link>inet6 2409:8c3c:ffff:3b10::1a  prefixlen 128  scopeid 0x0<global>ether fa:16:3e:03:07:8e  txqueuelen 1000  (Ethernet)RX packets 400  bytes 299740 (292.7 KiB)RX errors 0  dropped 0  overruns 0  frame 0TX packets 405  bytes 90337 (88.2 KiB)TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536inet 127.0.0.1  netmask 255.0.0.0inet6 ::1  prefixlen 128  scopeid 0x10<host>loop  txqueuelen 1000  (Local Loopback)RX packets 32  bytes 2520 (2.4 KiB)RX errors 0  dropped 0  overruns 0  frame 0TX packets 32  bytes 2520 (2.4 KiB)TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0[root@ecs-91176055 ~]#  ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000link/ether fa:16:3e:03:07:8e brd ff:ff:ff:ff:ff:ff

如果结果中有接口显示down,则表明物理层未能正常运行。 有时候物理连接是正常的,但网卡并未激活,可以尝试使用如下命令拉起接口:

ifconfig eth0 up
# 或
ip link set eth0 up

另外ethtool也是非常有用的工具,它提供了查询和修改设置的能力,可以调整诸如速率、端口、自动协商等参数。

[root@ecs-91176055 ~]#  ethtool eth0
Settings for eth0:Supported ports: [  ]Supported link modes:   Not reportedSupported pause frame use: NoSupports auto-negotiation: NoSupported FEC modes: Not reportedAdvertised link modes:  Not reportedAdvertised pause frame use: NoAdvertised auto-negotiation: NoAdvertised FEC modes: Not reportedSpeed: Unknown!Duplex: Unknown! (255)Auto-negotiation: offPort: OtherPHYAD: 0Transceiver: internalLink detected: yes

数据链路层

数据链路层使连接到同一网络的两台设备能够传输数据。该层包含两个部分。第一个组成部分是介质访问控制(MAC)层,涉及硬件寻址和访问控制操作。第二个部分是逻辑链路层,它能够在不同媒介间建立逻辑连接。

本层常见问题之一是两台服务器无法建立连接,此时可以使用pingtraceroutearp以及Wireshark等工具对数据链路层进行测试,验证同一网络组内设备之间数据帧是否正确传输和接收。

网络层

网络层的作用是确保数据能够在两个网络之间顺畅流动,在网络层工作的设备是路由器。路由器的主要任务是简化网络之间的通信,处理IP地址是这一层的工作内容。

在这个阶段,我们主要应查找与IP地址相关的问题,例如可以通过ip -br address show来查看地址,确认网卡是否已分配到IP地址。

[root@ecs-91176055 ~]#  ip -br address show
lo               UNKNOWN        127.0.0.1/8 ::1/128 
eth0             UP             192.168.0.4/24 2409:8c3c:ffff:3b10::1a/128 fe80::f816:3eff:fe03:78e/64 

如果您使用DHCP获取IP地址,那么可能是没有从DHCP获得动态IP地址。

另一个常见的问题是缺少特定路由或路由指向错误,导致数据包无法通过网关发出或走到了错误的网关。了解数据报到达最终目的地址的路由,在排查跨网络通信时尤其重要。我们可以通过ip route命令查看和管理路由表,也可以通过向默认网关或远端网关发送ping请求来检查连通性。

[root@ecs-91176055 ~]#  ip route
default via 192.168.0.1 dev eth0 proto dhcp metric 100 
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.4 metric 100 [root@ecs-91176055 ~]#  ip -6 route
::1 dev lo proto kernel metric 256 pref medium
2409:8c3c:ffff:3b10::1a dev eth0 proto kernel metric 100 pref medium
2409:8c3c:ffff:3b10::/64 dev eth0 proto ra metric 100 pref medium
fe80::/64 dev eth0 proto kernel metric 100 pref medium
default via fe80::6a54:edff:fe00:7f1c dev eth0 proto ra metric 100 pref medium[root@ecs-91176055 ~]#  ping 192.168.0.1 -c 4
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=0.095 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=0.096 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=0.097 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=0.120 ms--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3099ms
rtt min/avg/max/mdev = 0.095/0.102/0.120/0.010 ms

传输层

传输层使用传输控制协议(TCP)和用户数据报协议(UDP)等协议来控制系统间的网络流量,确保数据高效流动。传输层负责发送数据包,查找错误,控制数据流,并将其按序排列。

在这个层面遇到的问题,可能是监听端口未开启等。如果服务启动失败,可能是因为端口已被占用。可以运行netstatss命令查看哪些端口正在监听,并判断你需要连接的端口是否正由正确的程序监听。

[root@ecs-91176055 ~]#  netstat -ntupl
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name    
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      1245/sshd: /usr/sbi 
tcp        0      0 0.0.0.0:44321           0.0.0.0:*               LISTEN      1478/pmcd           
tcp        0      0 0.0.0.0:4330            0.0.0.0:*               LISTEN      2752/pmlogger       
tcp        0      0 0.0.0.0:111             0.0.0.0:*               LISTEN      743/rpcbind         
tcp6       0      0 :::22                   :::*                    LISTEN      1245/sshd: /usr/sbi 
tcp6       0      0 :::44321                :::*                    LISTEN      1478/pmcd           
tcp6       0      0 :::4330                 :::*                    LISTEN      2752/pmlogger       
tcp6       0      0 :::111                  :::*                    LISTEN      743/rpcbind         
udp        0      0 0.0.0.0:60469           0.0.0.0:*                           743/rpcbind         
udp        0      0 0.0.0.0:111             0.0.0.0:*                           743/rpcbind         
udp6       0      0 :::52026                :::*                                743/rpcbind         
udp6       0      0 :::111                  :::*                                743/rpcbind         
udp6       0      0 fe80::f816:3eff:fe0:546 :::*                                829/NetworkManager  [root@ecs-91176055 ~]#  ss -ntupl
Netid               State                Recv-Q                Send-Q                                                 Local Address:Port                                Peer Address:Port               Process                                                 
udp                 UNCONN               0                     0                                                            0.0.0.0:60469                                    0.0.0.0:*                   users:(("rpcbind",pid=743,fd=7))                       
udp                 UNCONN               0                     0                                                            0.0.0.0:111                                      0.0.0.0:*                   users:(("rpcbind",pid=743,fd=6))                       
udp                 UNCONN               0                     0                                                               [::]:52026                                       [::]:*                   users:(("rpcbind",pid=743,fd=10))                      
udp                 UNCONN               0                     0                                                               [::]:111                                         [::]:*                   users:(("rpcbind",pid=743,fd=9))                       
udp                 UNCONN               0                     0                                    [fe80::f816:3eff:fe03:78e]%eth0:546                                         [::]:*                   users:(("NetworkManager",pid=829,fd=25))               
tcp                 LISTEN               0                     128                                                          0.0.0.0:22                                       0.0.0.0:*                   users:(("sshd",pid=1245,fd=3))                         
tcp                 LISTEN               0                     5                                                            0.0.0.0:44321                                    0.0.0.0:*                   users:(("pmcd",pid=1478,fd=0))                         
tcp                 LISTEN               0                     5                                                            0.0.0.0:4330                                     0.0.0.0:*                   users:(("pmlogger",pid=2752,fd=7))                     
tcp                 LISTEN               0                     4096                                                         0.0.0.0:111                                      0.0.0.0:*                   users:(("rpcbind",pid=743,fd=8))                       
tcp                 LISTEN               0                     128                                                             [::]:22                                          [::]:*                   users:(("sshd",pid=1245,fd=4))                         
tcp                 LISTEN               0                     5                                                               [::]:44321                                       [::]:*                   users:(("pmcd",pid=1478,fd=3))                         
tcp                 LISTEN               0                     5                                                               [::]:4330                                        [::]:*                   users:(("pmlogger",pid=2752,fd=8))                     
tcp                 LISTEN               0                     4096                                                            [::]:111                                         [::]:*                   users:(("rpcbind",pid=743,fd=11))        

最常遇到的问题是无法与远端端口建立连接,这是可以使用telnet命令进行连通性测试:

[root@ecs-91176055 ~]#  telnet 192.168.0.6 6443
Trying 192.168.0.6...
Connected to 192.168.0.6.
Escape character is '^]'.

如果要检查远程UDP端口,则可以使用netcat工具(nc命令)。

会话层

会话层负责协调两个设备之间的通信发起和终止过程,通信发起和终止的时间段及称为会话。

在这个层面,可以检查凭据、服务器证书、客户端的会话ID和cookies等内容。

表示层

表示层负责将数据转换为能够呈现给用户的形式。

在这个网站访问的例子中,SSLTLS加密方法是这一层的关键组成部分。在这一层,我们可以检查加密和解密方面的问题。

应用层

系统在此层接收用户的输入并将输出返回给用户。我们熟知的FTP、SMTP、SSH、IMAP、DNS、HTTP等协议均运行在这一层级。

在这个阶段,我们可以检查服务器上的配置文件是否存在错误。此外,还可以查看服务器日志文件以获取有关问题的更多详细信息。

结论

我们从底层开始逐层向上探索,针对OSI模型的每一层介绍了各种专用工具和排查思路。尽管实际生产环境会复杂得多,但这种方法论确是通用的。

这篇关于如何使用OSI七层模型的思路进行Linux网络问题排障?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911497

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Oracle数据库定时备份脚本方式(Linux)

《Oracle数据库定时备份脚本方式(Linux)》文章介绍Oracle数据库自动备份方案,包含主机备份传输与备机解压导入流程,强调需提前全量删除原库数据避免报错,并需配置无密传输、定时任务及验证脚本... 目录说明主机脚本备机上自动导库脚本整个自动备份oracle数据库的过程(建议全程用root用户)总结

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Linux如何查看文件权限的命令

《Linux如何查看文件权限的命令》Linux中使用ls-R命令递归查看指定目录及子目录下所有文件和文件夹的权限信息,以列表形式展示权限位、所有者、组等详细内容... 目录linux China编程查看文件权限命令输出结果示例这里是查看tomcat文件夹总结Linux 查看文件权限命令ls -l 文件或文件夹

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.