Asyncio---Python牛不牛就靠你了

2024-04-17 07:58

本文主要是介绍Asyncio---Python牛不牛就靠你了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前在看gevent的时候不小心又看到了这个模块,gevent其实并不是python官方的标准库,有一些缺陷,所以这个时候Asyncio出现了。

这是官网也非常推荐的一个实现高并发的一个模块。在python3.6中已经稳定支持了。

640?wx_fmt=other

首先要做的事情:

Asyncio是干嘛的?

异步,并发,协程

CPU 的执行是顺序的,线程是操作系统提供的一种机制,允许我们在操作系统的层面上实现“并行”。而协程则可以认为是应用程序提供的一种机制(用户或库来完成),允许我们在应用程序的层面上实现“并行”。

由于本质上程序是顺序执行的,要实现这种“并行”的假像,我们需要一种机制,来“暂停”当前的执行流,并在之后“恢复”之前的执行流。这在操作系统及多线程/多进程中称为“上下文切换” (context switch)。其中“上下文”记录了某个线程执行的状态,包括线程里用到的各个变量,线程的调用栈等。而“切换”指的就是保存某个线程当前的运行状态,之后再从之前的状态中恢复。只不过线程相关的工作是由操作系统完成,而协程则是由应用程序自己来完成。


关于asyncio,有很多的模块支持,如图(一部分):

640?wx_fmt=png

详情可参考:

https://github.com/aio-libs

下面来介绍一下Asyncio里面可等待的对象(可等待的对象的意思就是可以在await方法中进行使用)一共分为以下三种:

coroutine (协程):

协程对象,指一个使用async关键字定义的函数,它的调用不会立即执行函数,而是会返回一个协程对象。协程对象需要注册到事件循环,由事件循环调用。

task (任务):

用来设置日程,以便并发执行协程,是对协程进一步封装,其中包含了任务的各种状态。

future(最终结果):

是一种特殊的 低层级 可等待对象,表示一个异步操作的最终结果。



Coroutine 

关于协程,一般通过async/await方法进行声明定义,来看一个最基本的例子,在hello输出1秒后输出world。

import asyncio

async def main():
print('hello')
await asyncio.sleep(1)
print('world')


以上就是定义一个简单的协程方法,定义好来就可以运行,关于运行,我们有三种方法可以调用(代表三种不同的运行机制),他们分别是:run,await,create_task


Run函数

asyncio.run(coro, *, debug=False)

run函数运行传入的协程,负责管理 asyncio 事件循环并完结异步生成器。

当有其他 asyncio 事件循环在同一线程中运行时,run函数不能被调用。

如果 debug 为 True,事件循环将以调试模式运行。

run函数总是会创建一个新的事件循环并在结束时关闭。它应当被用作 asyncio 程序的主入口点,理想情况下应当只被调用一次。也就是说,run函数里面的第一个参数应该是main函数。


Create_task函数

asyncio.create_task(coro)

将 coro 协程打包成一个 Task排入日程准备执行。返回 一个Task 对象。

该任务会在 get_running_loop() 返回的循环中执行,如果当前线程没有在运行的循环则会引发 RuntimeError。


await

await用于挂起阻塞的异步调用接口。

await可以针对耗时的操作进行挂起,就像生成器里的yield一样,函数让出控制权。协程遇到await,事件循环将会挂起该协程,执行别的协程,直到其他的协程也挂起或者执行完毕,再进行下一个协程的执行。

async def do_some_work(x):
print("waiting:",x)
# await 后面就是调用耗时的操作
await asyncio.sleep(x)
return "Done after {}s".format(x)



Future

Future 是一种特殊的可等待对象,表示一个异步操作的最终结果。

当一个 Future 对象 被等待,这意味着协程将保持等待直到该 Future 对象在其他地方操作完毕。

在 asyncio 中需要 Future 对象以便允许通过 async/await 使用基于回调的代码。

通常情况是不需要创建Future的代码的。
future会在api中用到,用户可在api中查看。

async def main():
await function_that_returns_a_future_object()

# this is also valid:
await asyncio.gather(
function_that_returns_a_future_object(),
some_python_coroutine()
)


Task

协程对象不能直接运行,在注册事件循环的时候,其实是run_until_complete方法将协程包装成为了一个任务(task)对象. task对象是Future类的子类,保存了协程运行后的状态,用于未来获取协程的结果。

task和future类似,可以运行协程。

Task 对象被用来在事件循环中运行协程。如果一个协程在等待一个 Future 对象,Task 对象会挂起该协程的执行并等待该 Future 对象完成。当该 Future 对象 完成,被打包的协程将恢复执行。

运行机制:一个事件循环每次运行一个 Task 对象。一个 Task 对象会等待一个 Future 对象完成,该事件循环会运行其他 Task、回调或执行 IO 操作。

创建Task:

import asyncio
import time

now = lambda: time.time()

async def do_some_work(x):
print("waiting:", x)

start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = loop.create_task(coroutine)
print(task)
loop.run_until_complete(task)
print(task)
print("Time:",now()-start)



关于阻塞

使用async可以定义协程对象,使用await可以针对耗时的操作进行挂起,就像生成器里的yield一样,函数让出控制权。协程遇到await,事件循环将会挂起该协程,执行别的协程,直到其他的协程也挂起或者执行完毕,再进行下一个协程的执行

耗时的操作一般是一些IO操作,例如网络请求,文件读取等。我们使用asyncio.sleep函数来模拟IO操作。协程的目的也是让这些IO操作异步化。

import asyncio
import time

now = lambda :time.time()

async def do_some_work(x):
print("waiting:",x)
# await 后面就是调用耗时的操作
await asyncio.sleep(x)
return "Done after {}s".format(x)

start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
loop.run_until_complete(task)

print("Task ret:", task.result())
print("Time:", now() - start)


代码里的sleep,模拟了阻塞或者耗时操作,这个时候就会让出控制权。 即当遇到阻塞调用的函数的时候,使用await方法将协程的控制权让出,以便loop调用其他的协程。


关于并发

简而言之就是有多个任务需要同时进行,这个时候就相当于我在同一时刻需要完成多个任务。可以看看下面这个例子:

import asyncio
import time

now = lambda :time.time()
# 定义协程方法
async def do_work(x):
print("Waiting:",x)
await asyncio.sleep(x)
return "Done after {}s".format(x)

start = now()
# 实例协程
coroutine1 = do_work(1)
coroutine2 = do_work(2)
coroutine3 = do_work(4)
# 协程的最终结果
tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
]
# 最先调用get_event_loop,开启协程的入口
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

for task in tasks:
print("Task ret:",task.result())
# 耗时
print("Use Time:",now()-start)


运行代码,我们可以看到运行的结果大概在4点几秒,小于七秒,如果是同步执行,我的最终耗时至少为1+2+4=7s,如果使用异步并发,总耗时接近在4s,4s的阻塞时间,足够前面两个协程执行完毕。这就是协程的并发使用。



关于协程还有很多的知识点,在这里只是管中窥豹,如果想要了解更多的内容,可以访问:

https://docs.python.org/zh-cn/3/library/asyncio-task.html#asyncio.gather



640?wx_fmt=gif

“扫一扫,获取新知识”


这篇关于Asyncio---Python牛不牛就靠你了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/911222

相关文章

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典