灰太狼的数据世界(四)

2024-04-17 07:48
文章标签 数据 世界 灰太狼

本文主要是介绍灰太狼的数据世界(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


640?wx_fmt=png

Scipy是


一个专门用于科学计算的库


它与Numpy有着密切的关系


Numpy是Scipy的基础


Scipy通过Numpy数据来进行科学计算


包含


统计

优化

整合

以及线性代数模块

傅里叶变换

信号和图像图例

常微分方差的求解等



给个表给你参考下?


640?wx_fmt=png


怎么样?


是不是看上去就有一股很骚气的味道?


那咱就继续学下去呗!


首先


安装

个人推荐pip直接全家桶


pip install -U numpy scipy scikit-learn


640?wx_fmt=png



当然也有人推荐

Anaconda

因为用了它

一套环境全搞定

妈妈再也不用担心我安装问题了~


安装完之后就是直接使用了

首先我们来谈谈

(这些函数其实都是numpy里面的

它们也可以被scipy对象使用)


unique函数

之前在numpy里面有说过

主要是用来除去重复元素

同样的,这个方法适用numpy

也适用于sm这样的一个对象

(类似于python里面的set)


import numpy as np
import scipy.misc as sm
x = np.array([1, 3, 2, 1, 4, 2])
print(np.unique(x), "# unique(x)")
face = sm.face()
print(np.unique(face), "# unique(face)")



bincount函数

统计出数组里的从0到数组最大值n

共n+1个自然数出现的次数


具体做法

先找出数组里的最大值

统计0~最大值间的所有值出现的次数


import numpy as np
import scipy.misc as sm
ascent = sm.ascent()
print("max of array {} has {}"
.format(np.max(ascent[0]),
len(ascent[0])))
b = np.bincount(ascent[0])
print("return array's length {}"
.format(len(b)))

print("result {}".format(b))



fromfunctiont函数

类似于python里面的map函数

利用传入的函数生成一个数组


import numpy as np
def func(x, y):
return (x + y) * 3

t = np.fromfunction(func, (3, 4),

        dtype=np.uint8)

print( "t = {}".format(t))


除了上面这几个

还有下面几个函数

put函数

替换数组里面的值

putmask函数

和put一样,也是替换

.........


刚刚说的这些

还是停留在Numpy的基础上

都是Numpy自己的函数


下面我们来说点有用的

看看Scipy自己的函数吧~


Scipy有一些专门的类

可以用来创建

稀疏矩阵

coo_matrix

csc_matrix

csr_matrix

bsr_matrix


我们来瞧一个栗子


import numpy as np
import scipy.sparse as ss
a = np.zeros((3, 4))
a[1, 2] = 12
a[2, 2] = 22
print(a)

print(ss.csc_matrix(a))

640?wx_fmt=png

我们可以在创建的ndarry里面找出不为零的值和他的位置,

将这个数组直接转化成稀疏矩阵



我们还可以利用

mat函数/bmat函数

来创建特殊的矩阵


np.mat函数可将数组转为矩阵

np.bmat函数可以矩阵为参数创建阵列的矩阵



import numpy as np
a = np.mat(np.ones([3, 3]))
b = np.mat(np.zeros([3,3]))
print("a = {}".format(a))
print("b = {}".format(b))
c = np.bmat("a,b;b,a")
print("c = {}".format(c))

640?wx_fmt=png


Tile函数

将第一个参数映射到第二个参数

import numpy as np
t = np.arange(9).reshape([3, 3])
print(t)
tm = np.tile(t, [3,2])
print(tm)

640?wx_fmt=png

将t映射到【3,2】上


block_diag函数

block_diag函数可以创建一个

广义“主对角线”非0的大矩阵

其参数是矩阵

用矩阵作为主对角线性的值

所以矩阵会很大~

import numpy as np
import scipy.linalg as sl
a = np.mat(np.ones([3, 3]))
b = np.mat(np.ones([4, 3]))
c = np.mat(np.ones([3, 4]))
print("a = {}".format(a))
print("b = {}".format(b))
print("c = {}".format(c))
d = sl.block_diag(a,b,c)
print("d = {}".format(d))

640?wx_fmt=png

640?wx_fmt=png



除了创建矩阵

scipy当然还有更多有趣的地方

例如

线性方程组求解

具体怎么算的我也就不瞎说了

图能看懂就看

高数没学好的

推荐一个重新学的网址:

https://baike.baidu.com/item/lu%E5%88%86%E8%A7%A3/764245?fr=aladdin


我们有各种方法进行求解

例如:


LU分解

QR分解

SVD分解

Cholesky分解



先来了解一下LU分解~

640?wx_fmt=png



640?wx_fmt=png


将LU分解转化成Scipy代码

SciPy里的

scipy.linalg.lu函数可以基本实现对Ax=b的LU分解

但scipy.linalg.lu函数的返回值有三个p'、l'、u'

所以矩阵分解变为(P'L')U' = A

from scipy.linalg import lu
import numpy as np
A = np.matrix([[2,3],[5,4]])
b = np.matrix([4,3])
p,l,u = lu(A)
print("p = {}".format(p))
print("l = {}".format(l))
print("u = {}".format(u))
print("plu = {}".format(p.dot(l).dot(u)))
print("A = {}".format(A))

640?wx_fmt=png



下面我们可以利用

LU分解求方程组的解

分解过后的方程如下:

640?wx_fmt=png

对应的结果也就是A

640?wx_fmt=png

之后我们

求p、l、u

然后用pl和b求y

用u和y求x的值


from scipy.linalg import lu,solve
import numpy as np
A = np.array([[2,3],[5,4]])
b = np.array([4,3])
# 求的p l u
p,l,u = lu(A)
print("p = {}".format(p))
print("l = {}".format(l))
print("u = {}".format(u))
# 求ply = b的y
y = solve(p.dot(l), b)
print("y = {}".format(y))
# 求ux = y的x
x = solve(u, y)
print("x = {}".format(x))

640?wx_fmt=png

结果最后一行输出的是x的值,

x=(x1,x2)=(−1,2)


Cholesky分解

要求解线性方程组Ax=b

其中为对称正定矩阵

又叫平方根法

是求解对称线性方程组常用的方法之一

那么可通过下面步骤求解


(1)求的Cholesky分解,得到A=LLT

(2)求解Ly=b,得到y

(3)求解LTx=y,得到x 


下面使用

scipy.linalg模块下的cholesky函数

来对系数矩阵进行求cholesky分解

from scipy.linalg import cholesky
import numpy as np
from scipy.linalg import lu,solve
A = np.array([[1,2,3],[2,8,8],[3,8,35]])
b = np.array([1,8,20])
l = cholesky(A, lower=True)
print("L = {}".format(l))
print("matmul = {}".format(np.matmul(l,l.T)))
print("dot = {}".format(l.dot(l.T)))
y = solve(l, b)
print(l.dot(y), b)
x = solve(l.T, y)
print("x = {}".format(x))
print(l.T.dot(x), y)
print("y = {}".format(y))

640?wx_fmt=png



QR分解

QR分解法是三种将矩阵分解的方式之一

它把矩阵分解成:

一个正交矩阵与一个上三角矩阵的积

QR分解经常用来解线性最小二乘法问题

scipy.linalg模块下的qr函数

可以对矩阵进行QR分解操作

from scipy.linalg import qr
import numpy as np
aa = np.array([[0,3,1],[0,4,-2],[2,1,2]])
qq, rr = qr(aa)
print("Q = {}".format(qq))
print("R = {}".format(rr))
print("A = {}".format(aa))
print("QR = {}".format(qq.dot(rr)))

640?wx_fmt=png


 SVD奇异分解

svd是现在比较常见的算法之一

也是数据挖掘工程师、算法工程师

必备的技能之一


假设A是一个M×N的矩阵,

那么通过矩阵分解将会得到

U,Σ,VT(V的转置)三个矩阵

其中U是一个M×M的方阵

被称为左奇异向量

方阵里面的向量是正交的

Σ是一个M×N的对角矩阵

除了对角线的元素其他都是0

对角线上的值称为奇异值

VT(V的转置)是一个N×N的矩阵

被称为右奇异向量

方阵里面的向量也都是正交的


640?wx_fmt=png

from scipy.linalg import qr,svd
import numpy as np
aa = np.array([[0,3,1],[0,4,-2],[2,1,2]])
u, e, v = svd(aa)
print("u = {}".format(u))
print("e = {}".format(e))
print("v = {}".format(v))


640?wx_fmt=png


SVD的应用场景也比较明显

典型的使用的场景:

信号的降噪

图像的压缩


我们这边可以来看一个图像压缩的例子:

import scipy.misc
from scipy.linalg import svd
import matplotlib.pyplot as plt
import numpy as np
import numpy
img = scipy.misc.face()[:,:,0]

print(img.shape,type(img))
img = np.matrix(img)
U,s,Vh=svd(img)
plt.gray()

plt.subplot(221,aspect='equal')
plt.title("orignal")
plt.imshow(img)
plt.imsave('org.png', img)

A = numpy.dot(U[:,0:10],numpy.dot(numpy.diag(s[0:10]),Vh[0:10,:]))
plt.subplot(222,aspect='equal')
plt.title(":10")
plt.imshow(A)
plt.imsave('a10.png', A)

A = numpy.dot(U[:,0:50],numpy.dot(numpy.diag(s[0:50]),Vh[0:50,:]))
plt.subplot(223,aspect='equal')
plt.title(":50")
plt.imshow(A)
plt.imsave('a50.png', A)

A = numpy.dot(U[:,0:100],numpy.dot(numpy.diag(s[0:100]),Vh[0:100,:]))
plt.subplot(224,aspect='equal')
plt.title(":100")
plt.imshow(A)
plt.imsave('a100.png', A)

plt.show()

压缩原理如下:

640?wx_fmt=png


总结


svd分解在

机器学习

深度学习

计算机视觉等领域

都有很多涉及

需明白基础不牢靠

学习机器学习也就是浮于表面


这一期关于scipy使用的内容就到这里了(主要是讲的如何去使用scipy,但是具体的数学理论没有特别去讲,觉得以后有必要搞一期,谈谈线性代数,毕竟矩阵这个东西我们现在很常用)


下一期我们将接触:

Scipy里面的

范德蒙多项式逼近

最邻近插值法

拉格朗日插值法

埃米尔特插值法

样条插值

函数的求导和积分




“看看数学,再看看python,再一脸懵逼”


这篇关于灰太狼的数据世界(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911207

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类