pytorch实现自己的深度神经网络(公共数据集)

2024-04-17 02:44

本文主要是介绍pytorch实现自己的深度神经网络(公共数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、训练文件——train.py

  注意:在运行此代码之前,需要配置好pytorch-GPU版本的环境,具体再次不谈。

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms# 检查GPU是否可用
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device:", device)# 数据预处理的转换
transform = transforms.Compose([transforms.Resize((256, 256)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载CIFAR-10训练数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)# 创建数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8,shuffle=True, num_workers=0)# 定义神经网络模型
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(128 * 32 * 32, 512)self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool(torch.relu(self.conv1(x)))x = self.pool(torch.relu(self.conv2(x)))x = self.pool(torch.relu(self.conv3(x)))x = x.view(-1, 128 * 32 * 32)x = torch.relu(self.fc1(x))x = self.fc2(x)return x# 实例化模型,并将其移动到可用设备上
model = CNN().to(device)# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)if __name__ == '__main__':# 训练神经网络for epoch in range(5):running_loss = 0.0for i, data in enumerate(train_loader, 0):inputs, labels = data[0].to(device), data[1].to(device)# 梯度清零optimizer.zero_grad()# 正向传播outputs = model(inputs)loss = criterion(outputs, labels)# 反向传播 + 优化loss.backward()optimizer.step()# 打印统计信息running_loss += loss.item()if i % 200 == 199:print('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 200))running_loss = 0.0print('Finished Training')# 保存模型至文件torch.save(model.state_dict(), 'cifar10_cnn_model.pth')

二、测试文件——val.py

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import cv2# 检查GPU是否可用
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device:", device)# 数据预处理的转换
transform = transforms.Compose([transforms.Resize((256, 256)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载CIFAR-10测试数据集
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)# 创建测试数据加载器
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=8,shuffle=False, num_workers=0)# 加载模型并将其移动到可用设备上
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(128 * 32 * 32, 512)self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool(torch.relu(self.conv1(x)))x = self.pool(torch.relu(self.conv2(x)))x = self.pool(torch.relu(self.conv3(x)))x = x.view(-1, 128 * 32 * 32)x = torch.relu(self.fc1(x))x = self.fc2(x)return x
# 显示函数
def imshow(img):img = img / 2 + 0.5npimg = img.numpy()# 坐标转换plt.imshow(np.transpose(npimg, (1, 2, 0)))plt.show()model = CNN().to(device)
model.load_state_dict(torch.load('cifar10_cnn_model.pth'))
model.eval()if __name__ == '__main__':# 在测试集上测试模型correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = data[0].to(device), data[1].to(device)outputs = model(images)# 预测值的最大值以及最大值的类别索引_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy on the test images: %d %%' % (100 * correct / total))# 显示测试集中的一些图片及其预测结果# 生成一个迭代器,从数据加载器中取出数据dataiter = iter(test_loader)# 从迭代器中获取下一个批次的数据images, labels = dataiter.next()# 将获取到的批次数据移动到device上,在这里也就是GPU上images, labels = images.to(device), labels.to(device)dip_flag = Falseif dip_flag == True:# -------------------------------------------# 可以选择 使用opencv显示# -------------------------------------------np_images = images.cpu().numpy()# 循环遍历并显示所有测试集图片for i in range(len(np_images)):# 从归一化中还原图像数据np_image = np.transpose(np_images[i], (1, 2, 0))   # 从CHW转换为HWCnp_image = np_image * 0.5 + 0.5# 将图像数据从float类型转换为unit8类型np_image = (np_image * 255).astype(np.uint8)# 使用opencv显示图像cv2.imshow("Image {}".format(i+1), np_image)cv2.waitKey(0)# 等待用户按下任意键继续显示下一张图像cv2.destroyAllWindows()imshow(torchvision.utils.make_grid(images.cpu()))print('GroundTruth: ', ' '.join('%5s' % test_dataset.classes[labels[j]] for j in range(8)))outputs = model(images)_, predicted = torch.max(outputs, 1)print('Predicted: ', ' '.join('%5s' % test_dataset.classes[predicted[j]]for j in range(8)))


直接运行即可,亲测可以运行

这篇关于pytorch实现自己的深度神经网络(公共数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910589

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、