STM32标准库+HAL库 | CPU片内FLASH存储器数据掉电读写

2024-04-16 22:36

本文主要是介绍STM32标准库+HAL库 | CPU片内FLASH存储器数据掉电读写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、片内FLASH

        在STM32芯片内部有一个FLASH存储器,它主要用于存储代码,我们在电脑上编写好应用程序后,使用下载器把编译后的代码文件烧录到该内部FLASH中, 由于FLASH存储器的内容在掉电后不会丢失,芯片重新上电复位后,内核可从内部FLASH中加载代码并运行。

        从下图所示的官方数据手册可知,STM32的Flash地址起始0x0800 0000结束地址是0x0800 0000加上芯片实际的Flash大小,不同的芯片Flash大小不同,FLASH一般用来存储代码和一些定义为const的数据断电不丢失。RAM起始地址是0x2000 0000,结束地址是0x2000 0000加上芯片的RAM大小,不同的芯片RAM也不同,是MCU的内存,用来存储代码运行时的数据,变量等等,掉电数据丢失。

        对FLASH进行操作时,有必要提前知道FLASH的内存大小,方便后面芯片选型和开发过程中对FLASH数据读写,掉电保存等操作。如下图可知,STM32内部FLASH的容量类型可根据它的型号名确定,本次HAL库使用的STM32G431RBT6芯片,其FLASH空间大小为128KB;标准库使用的是STM32F407VET6芯片,其FLASH空间大小为512KB。

        如下图所示,是从某元器件商城查询到的常用AT24C02及W25Q16系列存储器的价格,如果只是做单个原型设备,那么一个小存储器芯片的价格可能是不痛不痒的但对能进行大批量生产的电子产品,成本压缩几毛钱,都能创造一笔不菲的收入,甚至节约下来的成本可以供很多工程师的月工资。因此对于数据存储量不是很大的设备产品,就可以考虑直接使用MCU内置的FLASH进行数据掉电存储读写。

         因此如果MCU内部FLASH存储了应用程序后还有剩余的空间,我们可以把它像外部SPI-FLASH那样利用起来,存储一些程序运行时产生的需要掉电保存的数据。由于访问内部FLASH的速度要比外部的SPI-FLASH快得多,所以在紧急状态下常常会使用内部FLASH存储关键记录;为了防止应用程序被抄袭, 有的应用会禁止读写内部FLASH中的内容,或者在第一次运行时计算加密信息并记录到某些区域,然后删除自身的部分加密代码,这些应用都涉及到内部FLASH的操作。

二、FLASH读写编程思路

1、写Flash思路

0、确定写数据地址

1、FLASH解锁

2、擦除待写区域数据

3、写入数据

4、FLASH上锁

写Flash时会用到的HAL库API接口:

//对 FLASH 进行写操作前必须先解锁,解锁操作也就是必须在 FLASH_KEYR 寄存器写入特定的序列;有解锁当然就有上锁,为了保护Flash,读写和擦除全部完需要的Flash空间后,需要上锁操作。
//FLASH解锁
HAL_StatusTypeDef HAL_FLASH_Unlock(void);//擦除数据
void FLASH_PageErase(uint32_t Page, uint32_t Banks);
void FLASH_MassErase(uint32_t Banks);//写数据
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data);
void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data);
void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress);//FLASH上锁
HAL_StatusTypeDef HAL_FLASH_Lock(void);

写FLASH时的标准库API接口:

//FLASH解锁
void FLASH_Unlock(void);//擦除数据
FLASH_Status FLASH_EraseSector(uint32_t FLASH_Sector, uint8_t VoltageRange);
FLASH_Status FLASH_EraseAllSectors(uint8_t VoltageRange);
FLASH_Status FLASH_EraseAllBank1Sectors(uint8_t VoltageRange);
FLASH_Status FLASH_EraseAllBank2Sectors(uint8_t VoltageRange);//写数据
FLASH_Status FLASH_ProgramDoubleWord(uint32_t Address, uint64_t Data);
FLASH_Status FLASH_ProgramWord(uint32_t Address, uint32_t Data);
FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data);
FLASH_Status FLASH_ProgramByte(uint32_t Address, uint8_t Data);//FLASH上锁
void FLASH_Lock(void);

提醒:同一个库的不同版本,API的命名也能会有变动。不同芯片其库内的函数封装也可能存在差异。

2、读Flash数据

1、确定读数据地址

2、指针偏移间接读取

3、读取数据成功

三、HAL库FLASH读写

①、flash.c

#include "flash.h"//STM32G431RBT6的FLASH为128KB,因此FLASH地址起始地址:0x0800 0000,结束地址是:0x0802 0000/*** @brief  HAL库版写一个uint64_t类型的数据* @param  addr: 存储数据的地址* @param  data: 写入的数据* @retval 成功返回0, 失败返回-1*/
int Flash_HAL_Write_Data(uint32_t addr, uint64_t data)
{//1、FLASH解锁HAL_FLASH_Unlock();__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);//2、FLASH擦除FLASH_EraseInitTypeDef EraseInitStruct;EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;    //页擦除EraseInitStruct.Banks = FLASH_BANK_1;EraseInitStruct.Page = 15-1;    //从第几个页开始擦除(0开始)EraseInitStruct.NbPages = 5;    //擦除多少个页uint32_t PageError = 0;            //记录擦除出错时的起始地址if(HAL_FLASHEx_Erase(&EraseInitStruct, &PageError)!=HAL_OK){printf("FLASH擦除出错,开始出错地址:%#x\r\n", PageError);return -1;}//3、FLASH写入if(HAL_FLASH_Program(TYPEPROGRAM_DOUBLEWORD, addr, data)!=HAL_OK){printf("FLASH写入失败\r\n");return -1;}//4、FLASH上锁HAL_FLASH_Lock();return 0;
}/*** @brief  HAL库版写N个uint64_t类型的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0, 失败返回-1*/
int Flash_HAL_Write_N_Data(uint32_t addr, uint64_t *data, uint16_t num)
{//1、FLASH解锁HAL_FLASH_Unlock();__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);//2、FLASH擦除FLASH_EraseInitTypeDef EraseInitStruct;EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;    //页擦除EraseInitStruct.Banks = FLASH_BANK_1;EraseInitStruct.Page = 15-1;    //从第几个页开始擦除(0开始)EraseInitStruct.NbPages = 5;    //擦除多少个页uint32_t PageError = 0;            //记录擦除出错时的起始地址if(HAL_FLASHEx_Erase(&EraseInitStruct, &PageError)!=HAL_OK){printf("FLASH擦除出错,开始出错地址:%#x\r\n", PageError);return -1;}//3、FLASH写入for(uint16_t i=0; i<num; i++){if(HAL_FLASH_Program(TYPEPROGRAM_DOUBLEWORD, addr, data[i])!=HAL_OK){printf("FLASH写入失败\r\n");return -1;}addr += sizeof(uint64_t);}//4、FLASH上锁HAL_FLASH_Lock();    return 0;
}/*** @brief  HAL库版读取N个uint64_t类型的数据* @param  addr: 读取数据的地址(用户空间的地址)* @param  data: 数据数组* @param  num: 数据的个数* @retval NONE*/
void Flash_HAL_Read_N_Data(uint32_t addr, uint64_t *data, uint32_t num)
{for(uint32_t i=0; i<num; i++){data[i] = *(volatile uint64_t*)addr;addr += sizeof(uint64_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  HAL库版读取N个uint8_t类型的数据* @param  addr: 读取数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval NONE*/
void Flash_HAL_Read_N_Byte(uint32_t addr, uint8_t *data, uint32_t num)
{for(uint32_t i=0; i<num; i++){data[i] = *(volatile uint8_t*)addr;addr += sizeof(uint8_t);//根据读取的数据类型进行内存地址递增}
}

②、flash.h

#ifndef __FLASH_H
#define __FLASH_H#include "stm32g4xx_hal.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
//STM32G431RBT6的FLASH大小为128KB,只有63个页
#define ADDR_FLASH_PAGE_0     ((uint32_t)0x08000000) /* Base @ of Page 0, 2 Kbytes */
#define ADDR_FLASH_PAGE_1     ((uint32_t)0x08000800) /* Base @ of Page 1, 2 Kbytes */
#define ADDR_FLASH_PAGE_2     ((uint32_t)0x08001000) /* Base @ of Page 2, 2 Kbytes */
#define ADDR_FLASH_PAGE_3     ((uint32_t)0x08001800) /* Base @ of Page 3, 2 Kbytes */
#define ADDR_FLASH_PAGE_4     ((uint32_t)0x08002000) /* Base @ of Page 4, 2 Kbytes */
#define ADDR_FLASH_PAGE_5     ((uint32_t)0x08002800) /* Base @ of Page 5, 2 Kbytes */
#define ADDR_FLASH_PAGE_6     ((uint32_t)0x08003000) /* Base @ of Page 6, 2 Kbytes */
#define ADDR_FLASH_PAGE_7     ((uint32_t)0x08003800) /* Base @ of Page 7, 2 Kbytes */
#define ADDR_FLASH_PAGE_8     ((uint32_t)0x08004000) /* Base @ of Page 8, 2 Kbytes */
#define ADDR_FLASH_PAGE_9     ((uint32_t)0x08004800) /* Base @ of Page 9, 2 Kbytes */
#define ADDR_FLASH_PAGE_10    ((uint32_t)0x08005000) /* Base @ of Page 10, 2 Kbytes */
#define ADDR_FLASH_PAGE_11    ((uint32_t)0x08005800) /* Base @ of Page 11, 2 Kbytes */
#define ADDR_FLASH_PAGE_12    ((uint32_t)0x08006000) /* Base @ of Page 12, 2 Kbytes */
#define ADDR_FLASH_PAGE_13    ((uint32_t)0x08006800) /* Base @ of Page 13, 2 Kbytes */
#define ADDR_FLASH_PAGE_14    ((uint32_t)0x08007000) /* Base @ of Page 14, 2 Kbytes */
#define ADDR_FLASH_PAGE_15    ((uint32_t)0x08007800) /* Base @ of Page 15, 2 Kbytes */
#define ADDR_FLASH_PAGE_16    ((uint32_t)0x08008000) /* Base @ of Page 16, 2 Kbytes */
#define ADDR_FLASH_PAGE_17    ((uint32_t)0x08008800) /* Base @ of Page 17, 2 Kbytes */
#define ADDR_FLASH_PAGE_18    ((uint32_t)0x08009000) /* Base @ of Page 18, 2 Kbytes */
#define ADDR_FLASH_PAGE_19    ((uint32_t)0x08009800) /* Base @ of Page 19, 2 Kbytes */
#define ADDR_FLASH_PAGE_20    ((uint32_t)0x0800A000) /* Base @ of Page 20, 2 Kbytes */
#define ADDR_FLASH_PAGE_21    ((uint32_t)0x0800A800) /* Base @ of Page 21, 2 Kbytes */
#define ADDR_FLASH_PAGE_22    ((uint32_t)0x0800B000) /* Base @ of Page 22, 2 Kbytes */
#define ADDR_FLASH_PAGE_23    ((uint32_t)0x0800B800) /* Base @ of Page 23, 2 Kbytes */
#define ADDR_FLASH_PAGE_24    ((uint32_t)0x0800C000) /* Base @ of Page 24, 2 Kbytes */
#define ADDR_FLASH_PAGE_25    ((uint32_t)0x0800C800) /* Base @ of Page 25, 2 Kbytes */
#define ADDR_FLASH_PAGE_26    ((uint32_t)0x0800D000) /* Base @ of Page 26, 2 Kbytes */
#define ADDR_FLASH_PAGE_27    ((uint32_t)0x0800D800) /* Base @ of Page 27, 2 Kbytes */
#define ADDR_FLASH_PAGE_28    ((uint32_t)0x0800E000) /* Base @ of Page 28, 2 Kbytes */
#define ADDR_FLASH_PAGE_29    ((uint32_t)0x0800E800) /* Base @ of Page 29, 2 Kbytes */
#define ADDR_FLASH_PAGE_30    ((uint32_t)0x0800F000) /* Base @ of Page 30, 2 Kbytes */
#define ADDR_FLASH_PAGE_31    ((uint32_t)0x0800F800) /* Base @ of Page 31, 2 Kbytes */
#define ADDR_FLASH_PAGE_32    ((uint32_t)0x08010000) /* Base @ of Page 32, 2 Kbytes */
#define ADDR_FLASH_PAGE_33    ((uint32_t)0x08010800) /* Base @ of Page 33, 2 Kbytes */
#define ADDR_FLASH_PAGE_34    ((uint32_t)0x08011000) /* Base @ of Page 34, 2 Kbytes */
#define ADDR_FLASH_PAGE_35    ((uint32_t)0x08011800) /* Base @ of Page 35, 2 Kbytes */
#define ADDR_FLASH_PAGE_36    ((uint32_t)0x08012000) /* Base @ of Page 36, 2 Kbytes */
#define ADDR_FLASH_PAGE_37    ((uint32_t)0x08012800) /* Base @ of Page 37, 2 Kbytes */
#define ADDR_FLASH_PAGE_38    ((uint32_t)0x08013000) /* Base @ of Page 38, 2 Kbytes */
#define ADDR_FLASH_PAGE_39    ((uint32_t)0x08013800) /* Base @ of Page 39, 2 Kbytes */
#define ADDR_FLASH_PAGE_40    ((uint32_t)0x08014000) /* Base @ of Page 40, 2 Kbytes */
#define ADDR_FLASH_PAGE_41    ((uint32_t)0x08014800) /* Base @ of Page 41, 2 Kbytes */
#define ADDR_FLASH_PAGE_42    ((uint32_t)0x08015000) /* Base @ of Page 42, 2 Kbytes */
#define ADDR_FLASH_PAGE_43    ((uint32_t)0x08015800) /* Base @ of Page 43, 2 Kbytes */
#define ADDR_FLASH_PAGE_44    ((uint32_t)0x08016000) /* Base @ of Page 44, 2 Kbytes */
#define ADDR_FLASH_PAGE_45    ((uint32_t)0x08016800) /* Base @ of Page 45, 2 Kbytes */
#define ADDR_FLASH_PAGE_46    ((uint32_t)0x08017000) /* Base @ of Page 46, 2 Kbytes */
#define ADDR_FLASH_PAGE_47    ((uint32_t)0x08017800) /* Base @ of Page 47, 2 Kbytes */
#define ADDR_FLASH_PAGE_48    ((uint32_t)0x08018000) /* Base @ of Page 48, 2 Kbytes */
#define ADDR_FLASH_PAGE_49    ((uint32_t)0x08018800) /* Base @ of Page 49, 2 Kbytes */
#define ADDR_FLASH_PAGE_50    ((uint32_t)0x08019000) /* Base @ of Page 50, 2 Kbytes */
#define ADDR_FLASH_PAGE_51    ((uint32_t)0x08019800) /* Base @ of Page 51, 2 Kbytes */
#define ADDR_FLASH_PAGE_52    ((uint32_t)0x0801A000) /* Base @ of Page 52, 2 Kbytes */
#define ADDR_FLASH_PAGE_53    ((uint32_t)0x0801A800) /* Base @ of Page 53, 2 Kbytes */
#define ADDR_FLASH_PAGE_54    ((uint32_t)0x0801B000) /* Base @ of Page 54, 2 Kbytes */
#define ADDR_FLASH_PAGE_55    ((uint32_t)0x0801B800) /* Base @ of Page 55, 2 Kbytes */
#define ADDR_FLASH_PAGE_56    ((uint32_t)0x0801C000) /* Base @ of Page 56, 2 Kbytes */
#define ADDR_FLASH_PAGE_57    ((uint32_t)0x0801C800) /* Base @ of Page 57, 2 Kbytes */
#define ADDR_FLASH_PAGE_58    ((uint32_t)0x0801D000) /* Base @ of Page 58, 2 Kbytes */
#define ADDR_FLASH_PAGE_59    ((uint32_t)0x0801D800) /* Base @ of Page 59, 2 Kbytes */
#define ADDR_FLASH_PAGE_60    ((uint32_t)0x0801E000) /* Base @ of Page 60, 2 Kbytes */
#define ADDR_FLASH_PAGE_61    ((uint32_t)0x0801E800) /* Base @ of Page 61, 2 Kbytes */
#define ADDR_FLASH_PAGE_62    ((uint32_t)0x0801F000) /* Base @ of Page 62, 2 Kbytes */
#define ADDR_FLASH_PAGE_63    ((uint32_t)0x0801F800) /* Base @ of Page 63, 2 Kbytes */#define FLASH_USER_START_ADDR   ADDR_FLASH_PAGE_15   /* Start @ of user Flash area */
#define FLASH_USER_END_ADDR     ADDR_FLASH_PAGE_18   /* End @ of user Flash area */int Flash_HAL_Write_Data(uint32_t addr, uint64_t data);
int Flash_HAL_Write_N_Data(uint32_t addr, uint64_t *data, uint16_t num);
void Flash_HAL_Read_N_Data(uint32_t addr, uint64_t *data, uint32_t num);
void Flash_HAL_Read_N_Byte(uint32_t addr, uint8_t *data, uint32_t num);#endif

③、字符串读写测试

④、整形数读写测试

四、标志库FLASH读写

①、flash.c

#include "flash.h"/*** @brief  清除用户FLASH扇区的数据* @param  NONE* @retval NONE*/
int Flash_Clean_User_Area_Data(uint32_t addr)
{//1、FLASH解锁FLASH_Unlock();//2、FLASH数据擦除if(FLASH_EraseSector(Flash_Addr_Get_Sector(addr), VoltageRange_3) != FLASH_COMPLETE){printf("FLASH擦除出错\r\n");//4、FLASH上锁FLASH_Lock();return -1;}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  写N个字节(uint8_t)的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0,失败返回-1*/
int Flash_Write_N_Byte(uint32_t addr, uint8_t *data, uint16_t num)
{//1、FLASH解锁FLASH_Unlock();//2、擦除数据//数据擦除操作会将一整个扇区擦除,如果需要连续写,最初用一次就行了//3、FLASH写入for(uint16_t i=0; i<num; i++){if(FLASH_ProgramByte(addr, data[i]) != FLASH_COMPLETE){printf("写多字节Byte数据失败\r\n");FLASH_Lock();return -1;}addr += sizeof(uint8_t);}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  写N个半字(uint16_t)的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0,失败返回-1*/
int Flash_Write_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num)
{//1、FLASH解锁FLASH_Unlock();//2、擦除数据//数据擦除操作会将一整个扇区擦除,如果需要连续写,最初用一次就行了//3、FLASH写入for(uint16_t i=0; i<num; i++){if(FLASH_ProgramHalfWord(addr, data[i]) != FLASH_COMPLETE){printf("写多个半字HalfWord数据失败\r\n");FLASH_Lock();return -1;}addr += sizeof(uint16_t);}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  写N个字(uint32_t)的数据* @param  addr: 存储数据的地址* @param  data: 数据数组* @param  num: 数据的个数* @retval 成功返回0,失败返回-1*/
int Flash_Write_N_Word(uint32_t addr, uint32_t *data, uint16_t num)
{//1、FLASH解锁FLASH_Unlock();//2、擦除数据//数据擦除操作会将一整个扇区擦除,如果需要连续写,最初用一次就行了//3、FLASH写入for(uint16_t i=0; i<num; i++){if(FLASH_ProgramWord(addr, data[i]) != FLASH_COMPLETE){printf("写多个字Word数据失败\r\n");FLASH_Lock();return -1;}addr += sizeof(uint32_t);}//4、FLASH上锁FLASH_Lock();return 0;
}/*** @brief  读N个字节(uint8_t)的数据* @param  addr: 数据的存储地址* @param  data: 数据数组* @param  num: 需要读取的数据个数* @retval 成功返回0,失败返回-1*/
void Flash_Read_N_Byte(uint32_t addr, uint8_t *data, uint16_t num)
{for(uint16_t i=0; i<num; i++){data[i] = *(volatile uint8_t*)addr;addr += sizeof(uint8_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  读N个半字(uint16_t)的数据* @param  addr: 数据的存储地址* @param  data: 数据数组* @param  num: 需要读取的数据个数* @retval 成功返回0,失败返回-1*/
void Flash_Read_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num)
{for(uint16_t i=0; i<num; i++){data[i] = *(volatile uint16_t*)addr;addr += sizeof(uint16_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  读N个字(uint32_t)的数据* @param  addr: 数据的存储地址* @param  data: 数据数组* @param  num: 需要读取的数据个数* @retval 成功返回0,失败返回-1*/
void Flash_Read_N_Word(uint32_t addr, uint32_t *data, uint16_t num)
{for(uint16_t i=0; i<num; i++){data[i] = *(volatile uint32_t*)addr;addr += sizeof(uint32_t);//根据读取的数据类型进行内存地址递增}
}/*** @brief  计算FLASH地址所在的扇区* @param  addr:FLASH地址* @retval 返回所在扇区数*/
uint32_t Flash_Addr_Get_Sector(uint32_t addr)
{uint32_t sector = 0;if((addr < ADDR_FLASH_SECTOR_1) && (addr >= ADDR_FLASH_SECTOR_0)){sector = FLASH_Sector_0;  }else if((addr < ADDR_FLASH_SECTOR_2) && (addr >= ADDR_FLASH_SECTOR_1)){sector = FLASH_Sector_1;  }else if((addr < ADDR_FLASH_SECTOR_3) && (addr >= ADDR_FLASH_SECTOR_2)){sector = FLASH_Sector_2;  }else if((addr < ADDR_FLASH_SECTOR_4) && (addr >= ADDR_FLASH_SECTOR_3)){sector = FLASH_Sector_3;  }else if((addr < ADDR_FLASH_SECTOR_5) && (addr >= ADDR_FLASH_SECTOR_4)){sector = FLASH_Sector_4;  }else if((addr < ADDR_FLASH_SECTOR_6) && (addr >= ADDR_FLASH_SECTOR_5)){sector = FLASH_Sector_5;  }else if((addr < ADDR_FLASH_SECTOR_7) && (addr >= ADDR_FLASH_SECTOR_6)){sector = FLASH_Sector_6;  }else if((addr < ADDR_FLASH_SECTOR_8) && (addr >= ADDR_FLASH_SECTOR_7)){sector = FLASH_Sector_7;  }
}

②、flash.h

#ifndef __FLASH_H
#define __FLASH_H#include "stm32f4xx.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>//STM32F407VET6的FLASH内存空间大小为512KB,起始地址:0x0800 0000,结束地址:0x0807 FFFF/* Base address of the Flash sectors */ 
#define ADDR_FLASH_SECTOR_0     ((uint32_t)0x08000000) /* Base address of Sector 0, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_1     ((uint32_t)0x08004000) /* Base address of Sector 1, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_2     ((uint32_t)0x08008000) /* Base address of Sector 2, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_3     ((uint32_t)0x0800C000) /* Base address of Sector 3, 16 Kbytes   */
#define ADDR_FLASH_SECTOR_4     ((uint32_t)0x08010000) /* Base address of Sector 4, 64 Kbytes   */
#define ADDR_FLASH_SECTOR_5     ((uint32_t)0x08020000) /* Base address of Sector 5, 128 Kbytes  */
#define ADDR_FLASH_SECTOR_6     ((uint32_t)0x08040000) /* Base address of Sector 6, 128 Kbytes  */
#define ADDR_FLASH_SECTOR_7     ((uint32_t)0x08060000) /* Base address of Sector 7, 128 Kbytes  */
#define ADDR_FLASH_SECTOR_8     ((uint32_t)0x08080000) /* Base address of Sector 8, 128 Kbytes  *///用户自由使用的FLASH起始地址,需要根据实际代码占用的内存空间进行变动
#define FLASH_USER_START_ADDR   ADDR_FLASH_SECTOR_5   /* Start address of user Flash area */
#define FLASH_USER_END_ADDR     ADDR_FLASH_SECTOR_6  /* End address of user Flash area */int Flash_Clean_User_Area_Data(uint32_t addr);
int Flash_Write_N_Byte(uint32_t addr, uint8_t *data, uint16_t num);
int Flash_Write_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num);
int Flash_Write_N_Word(uint32_t addr, uint32_t *data, uint16_t num);void Flash_Read_N_Byte(uint32_t addr, uint8_t *data, uint16_t num);
void Flash_Read_N_HalfWord(uint32_t addr, uint16_t *data, uint16_t num);
void Flash_Read_N_Word(uint32_t addr, uint32_t *data, uint16_t num);uint32_t Flash_Addr_Get_Sector(uint32_t addr);#endif

③、字符串读写测试

④、整形数读写测试

这篇关于STM32标准库+HAL库 | CPU片内FLASH存储器数据掉电读写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910087

相关文章

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

Redis中的数据一致性问题以及解决方案

《Redis中的数据一致性问题以及解决方案》:本文主要介绍Redis中的数据一致性问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Redis 数据一致性问题的产生1. 单节点环境的一致性问题2. 网络分区和宕机3. 并发写入导致的脏数据4. 持

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义