算法学习——LeetCode力扣补充篇8(146. LRU 缓存、 215. 数组中的第K个最大元素、25. K 个一组翻转链表)

本文主要是介绍算法学习——LeetCode力扣补充篇8(146. LRU 缓存、 215. 数组中的第K个最大元素、25. K 个一组翻转链表),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法学习——LeetCode力扣补充篇8

在这里插入图片描述

146. LRU 缓存

146. LRU 缓存 - 力扣(LeetCode)

描述

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例

示例:

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示

1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

代码解析

链表法(超时)
class LRUCache {
public:list<pair<int,int>> my_list;int max_size = 0;LRUCache(int capacity) {max_size = capacity;}int get(int key) {auto it = my_list.begin();for(int i=0 ; i<my_list.size() ;i++,it++){if(it->first == key) {pair<int,int> tmp = *it;my_list.erase(it);my_list.push_front(tmp);return tmp.second;}}return -1;}void put(int key, int value) {auto it = my_list.begin();for(int i=0 ; i<my_list.size() ;i++,it++){if(it->first == key){my_list.erase(it);break;}}my_list.push_front({key,value});if(my_list.size() > max_size) my_list.pop_back();return ;}
};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/
自制双向链表
class LRUCache {
public:struct  Node{int key;int value;Node* pre;Node* next;Node():key(0),value(0),pre(nullptr),next(nullptr) {}Node(int x,int y):key(x),value(y),pre(nullptr),next(nullptr) {}};LRUCache(int capacity) {_capacity = capacity;head = new Node();tail = new Node();head->next = tail;tail->pre  = head;}int get(int key) {if(my_map.find(key) == my_map.end() ) return -1;Node* tmp = my_map[key];remove_node(tmp);add_head(tmp);return tmp->value;}void put(int key, int value) {if(my_map.find(key) == my_map.end() ) //不存在{Node* new_node = new Node(key,value);my_map[key] = new_node;add_head(new_node);size++;if(size > _capacity){my_map.erase(tail->pre->key);remove_node(tail->pre);}}else{Node* tmp = my_map[key];tmp->value = value;remove_node(tmp);add_head(tmp);}}void add_head(Node* new_node){new_node->pre = head;new_node->next = head->next;head->next->pre = new_node;head->next = new_node;}void remove_node(Node* node){node->pre->next = node->next;node->next->pre = node->pre;}
private:int _capacity;Node* head;Node* tail;int size=0;unordered_map<int,Node*> my_map;};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/

215. 数组中的第K个最大元素

215. 数组中的第K个最大元素 - 力扣(LeetCode)

描述

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例

示例 1:

输入: [3,2,1,5,6,4], k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4

提示

1 <= k <= nums.length <= 105
-104 <= nums[i] <= 104

代码解析

库函数
class Solution {
public:int findKthLargest(vector<int>& nums, int k) {sort(nums.begin(),nums.end());return nums[nums.size()-k];}
};
快速排序
class Solution {
public:void swap(int &a , int &b){int tmp = b;b = a;a = tmp;}int part(vector<int>& nums , int left , int right){int key = nums[left];while(left<right){while(left < right && nums[right] <= key) right--;swap(nums[left] , nums[right]);while(left < right && nums[left] >= key) left++;swap(nums[left] , nums[right]);}return left;}void quick_sort(vector<int>& nums , int left , int right){if(left > right) return;int mid = part(nums,left,right);quick_sort(nums,left,mid-1);quick_sort(nums,mid+1,right);}int findKthLargest(vector<int>& nums, int k) {quick_sort(nums,0,nums.size()-1);return nums[k-1];}
};
快速排序
class Solution {
public:void quickSort(vector<int>& arr, int left, int right) {// 定义枢轴int pivot = arr[(left + right) / 2];//int pivot = arr[left]; 也可以// 定义两个指针int i = left;int j = right;// 当左指针比右指针小时继续循环while (i <= j){// 左指针从左往右扫描,直到找到一个元素比枢轴大while (arr[i] > pivot) i++;// 右指针从右往左扫描,直到找到一个元素比枢轴小while (arr[j] < pivot) j--;// 如果两个指针没有相遇,交换它们所指向的元素if (i <= j){int temp = arr[i];arr[i] = arr[j];arr[j] = temp;i++;j--;}}// 如果左边还有元素,递归左边的排序if (left < j) quickSort(arr, left, j);// 如果右边还有元素,递归右边的排序if (i < right) quickSort(arr, i, right);}int findKthLargest(vector<int>& nums, int k) {quickSort(nums,0,nums.size()-1);return nums[k-1];}
};

25. K 个一组翻转链表

25. K 个一组翻转链表 - 力扣(LeetCode)

描述

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。

k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。

你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

示例

示例 1:
在这里插入图片描述

输入:head = [1,2,3,4,5], k = 2
输出:[2,1,4,3,5]

示例 2:

在这里插入图片描述

输入:head = [1,2,3,4,5], k = 3
输出:[3,2,1,4,5]

提示

链表中的节点数目为 n
1 <= k <= n <= 5000
0 <= Node.val <= 1000

进阶:你可以设计一个只用 O(1) 额外内存空间的算法解决此问题吗?

代码解析

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseKGroup(ListNode* head, int k) {stack<int> my_stack;vector<int> v_nums;ListNode* tmp = head;int num = 0;while(tmp != nullptr && num < k){num++;v_nums.push_back(tmp->val);my_stack.push(tmp->val);if(num == k){while(num--) v_nums.pop_back();num = k;while(num--){v_nums.push_back(my_stack.top());my_stack.pop();}cout<<num<<' ';num = 0;}tmp = tmp->next;}tmp = head;int i=0;while(tmp != nullptr){tmp->val = v_nums[i];tmp = tmp->next;i++;}return head;}
};

这篇关于算法学习——LeetCode力扣补充篇8(146. LRU 缓存、 215. 数组中的第K个最大元素、25. K 个一组翻转链表)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909957

相关文章

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

PyCharm如何更改缓存位置

《PyCharm如何更改缓存位置》:本文主要介绍PyCharm如何更改缓存位置的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm更改缓存位置1.打开PyCharm的安装编程目录2.将config、sjsystem、plugins和log的路径

JSR-107缓存规范介绍

《JSR-107缓存规范介绍》JSR是JavaSpecificationRequests的缩写,意思是Java规范提案,下面给大家介绍JSR-107缓存规范的相关知识,感兴趣的朋友一起看看吧... 目录1.什么是jsR-1072.应用调用缓存图示3.JSR-107规范使用4.Spring 缓存机制缓存是每一

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示