【深度学习】AI修图——DragGAN原理解析

2024-04-16 13:20

本文主要是介绍【深度学习】AI修图——DragGAN原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、前言

上一篇,我们讲述了StyleGAN2。这一篇,我们就来讲一个把StyleGAN2作为基底架构的DragGAN。DragGAN的作用主要是对图片进行编辑,说厉害点,可能和AI修图差不多。这篇论文比较新,发表自2023年

原论文:Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

参考代码:https://github.com/skimai/DragGAN

视频:AI修图——DragGAN原理解析-哔哩哔哩

演示(随意选择红点,让红点对应位置的像素移动到蓝点):

demo

2、DragGAN运行原理:

前置知识:StyleGAN(请确保你已经知道这个模型)

DragGAN模型的原理,是构建在StyleGAN的基础上。以下,为StyleGAN的模型图

在这里插入图片描述

首先,你要有一个训练好的StyleGAN,然后通过该模型,获得一个风格信息w latent Code。接着,用这个风格信息合成图像,如上图的演示,得到狮子的图像。

接着,我们在狮子图像上,选择数量对等的红色点(初始点)和蓝色点(目标点),每一个红色点周围的像素点慢慢移动到对应蓝色点的位置,从而达到修图的效果

在这里插入图片描述

3、实现方法

DragGAN使用的是StyleGAN2,所里里面的风格信息记作w+ latent Code

StyleGAN2的w+ latent Code代表的是风格信息。对图像位置进行移动等等,其实就是风格信息的修改,因此,DragGAN其实就是通过优化w来实现图像的变化。并且,作者通过实验,发现这种空间属性的变化,主要由前6层的w+ latent Code控制,所以作者只优化前6层的w+。

除此之外,作者通过衡量合成网络特征图之间的差异来判断是否初始点达到了目标点。(为了方便,以下所有的w都表示w+)

来看具体流程

①对生成的图像狮子,其有对应风格信息 w latent Code。在图像上选择红色点(初始点,记为p)跟蓝色点(目标点,记为t)。

②找到256x256分辨率的输出特征图(feature map),然后通过双线性插值的方法,将分辨率采样成1024x1024(假设狮子的像素是1024)。如下图的Feature,记为F

在这里插入图片描述

③把在狮子的红色点p和蓝色点t,也同样标记在Feature中,记为 F ( p ) F(p) F(p) F ( t ) F(t) F(t),计算 p p p指向 t t t的方向向量 d = t − p ∣ ∣ t − p ∣ ∣ 2 d=\frac{t-p}{||t-p||_2} d=∣∣tp2tp(分母是对向量归一化).

④在F§这个位置点,画一个半径为 r 1 r_1 r1的红色小圆,取特征图F里面位置在圆内的所有像素点(红色区域),记其中某一个像素点为 q i q_i qi,并把这个像素点根据方向向量移动,即 F ( q i + d ) F(q_i+d) F(qi+d)

⑤最小化 ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d ) ∣ ∣ 1 ||F(q_i).detach()-F(q_i+d)||_1 ∣∣F(qi).detach()F(qi+d)1。detach代表 F ( q i ) F(q_i) F(qi)不反向传播,这会激励 q i + d q_i+d qi+d这个位置的值尽量等于 F ( q i ) F(q_i) F(qi),而 F ( q i ) F(q_i) F(qi)代表的刚好是狮子对应位置的特征,所以更新之后会产生移动

⑥对于红色圆区域内的所有点,我们希望它都朝着d的方向移动,所以有最小化
∑ q i ∈ Ω 1 ( p , r 1 ) ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d ) ∣ ∣ 1 \sum\limits_{q_i\in \Omega_1(p,r_1)}||F(q_i).detach()-F(q_i+d)||_1 qiΩ1(p,r1)∣∣F(qi).detach()F(qi+d)1
​ 其中 Ω \Omega Ω表示的是红色圆, q i q_i qi表示属于圆内的像素点。

⑦在实际中,可能不止有一个红色点和蓝色点,可能存在n个,所以
∑ j = 1 n ∑ q i ∈ Ω 1 ( p j , r 1 ) ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d j ) ∣ ∣ 1 \sum\limits_{j=1}^n\sum\limits_{q_i\in \Omega_1(p_j,r_1)}||F(q_i).detach()-F(q_i+d_j)||_1 j=1nqiΩ1(pj,r1)∣∣F(qi).detach()F(qi+dj)1
⑧DragGAN还允许用户选择图像哪些区域不变,哪些区域改变,则设定区域不变性
∑ j = 1 n ∑ q i ∈ Ω 1 ( p j , r 1 ) ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d j ) ∣ ∣ 1 + λ ∣ ∣ ( F − F 0 ) ∗ ( 1 − M ) ∣ ∣ 1 \sum\limits_{j=1}^n\sum\limits_{q_i\in \Omega_1(p_j,r_1)}||F(q_i).detach()-F(q_i+d_j)||_1 +\lambda||(F-F_0)*(1-M)||_1 j=1nqiΩ1(pj,r1)∣∣F(qi).detach()F(qi+dj)1+λ∣∣(FF0)(1M)1
​ 其中M是一张与特征图F一样大的矩阵,取值0或1,0代表图像的这个区域不改变,1代表可改变。

⑨对上面的损失函数进行优化更新w风格信息,得到新的 w ′ w' w,新的特征图 F ′ F' F。由于梯度下降和方向向量d的正则化的原因,并不能使初始点p一步到位走到目标点t,所以需要从新的特征图 F ′ F' F找到初始点p已经走到哪里了,我们记初始点为在原始特征图上为 f i = F 0 ( p i ) f_i=F_0(p_i) fi=F0(pi)

⑩取新的特征图 F ′ F' F,在初始点p这个位置画一个变长为 r 2 r_2 r2红色正方形(图中第二个特征图),把正方形内的像素点与 F 0 ( p i ) F_0(p_i) F0(pi)作最近邻搜索,长得最像的那个就是皮卡丘,将其作为新的初始点,即
p i : = arg ⁡ min ⁡ q i ∈ Ω 2 ( p i , r 2 ) ∣ ∣ F ′ ( q i ) − f i ∣ ∣ 1 p_i:=\mathop{\arg\min}\limits_{q_i\in\Omega_2(p_i,r_2)}{||F'(q_i)-f_i||_1} pi:=qiΩ2(pi,r2)argmin∣∣F(qi)fi1
: = := :=表示将右边的所得最小对应变量值赋给等式左边

迭代更新,最终使得初始点到达点t点,结束

看不明白?那就看视频吧,文字所能传达的信息有限。我尽力了,私密马赛

4、结束

以上就是DragGAN这篇论文的全部内容了,如有问题,还望指出,阿里嘎多!
在这里插入图片描述

这篇关于【深度学习】AI修图——DragGAN原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908902

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse