【深度学习】AI修图——DragGAN原理解析

2024-04-16 13:20

本文主要是介绍【深度学习】AI修图——DragGAN原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、前言

上一篇,我们讲述了StyleGAN2。这一篇,我们就来讲一个把StyleGAN2作为基底架构的DragGAN。DragGAN的作用主要是对图片进行编辑,说厉害点,可能和AI修图差不多。这篇论文比较新,发表自2023年

原论文:Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

参考代码:https://github.com/skimai/DragGAN

视频:AI修图——DragGAN原理解析-哔哩哔哩

演示(随意选择红点,让红点对应位置的像素移动到蓝点):

demo

2、DragGAN运行原理:

前置知识:StyleGAN(请确保你已经知道这个模型)

DragGAN模型的原理,是构建在StyleGAN的基础上。以下,为StyleGAN的模型图

在这里插入图片描述

首先,你要有一个训练好的StyleGAN,然后通过该模型,获得一个风格信息w latent Code。接着,用这个风格信息合成图像,如上图的演示,得到狮子的图像。

接着,我们在狮子图像上,选择数量对等的红色点(初始点)和蓝色点(目标点),每一个红色点周围的像素点慢慢移动到对应蓝色点的位置,从而达到修图的效果

在这里插入图片描述

3、实现方法

DragGAN使用的是StyleGAN2,所里里面的风格信息记作w+ latent Code

StyleGAN2的w+ latent Code代表的是风格信息。对图像位置进行移动等等,其实就是风格信息的修改,因此,DragGAN其实就是通过优化w来实现图像的变化。并且,作者通过实验,发现这种空间属性的变化,主要由前6层的w+ latent Code控制,所以作者只优化前6层的w+。

除此之外,作者通过衡量合成网络特征图之间的差异来判断是否初始点达到了目标点。(为了方便,以下所有的w都表示w+)

来看具体流程

①对生成的图像狮子,其有对应风格信息 w latent Code。在图像上选择红色点(初始点,记为p)跟蓝色点(目标点,记为t)。

②找到256x256分辨率的输出特征图(feature map),然后通过双线性插值的方法,将分辨率采样成1024x1024(假设狮子的像素是1024)。如下图的Feature,记为F

在这里插入图片描述

③把在狮子的红色点p和蓝色点t,也同样标记在Feature中,记为 F ( p ) F(p) F(p) F ( t ) F(t) F(t),计算 p p p指向 t t t的方向向量 d = t − p ∣ ∣ t − p ∣ ∣ 2 d=\frac{t-p}{||t-p||_2} d=∣∣tp2tp(分母是对向量归一化).

④在F§这个位置点,画一个半径为 r 1 r_1 r1的红色小圆,取特征图F里面位置在圆内的所有像素点(红色区域),记其中某一个像素点为 q i q_i qi,并把这个像素点根据方向向量移动,即 F ( q i + d ) F(q_i+d) F(qi+d)

⑤最小化 ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d ) ∣ ∣ 1 ||F(q_i).detach()-F(q_i+d)||_1 ∣∣F(qi).detach()F(qi+d)1。detach代表 F ( q i ) F(q_i) F(qi)不反向传播,这会激励 q i + d q_i+d qi+d这个位置的值尽量等于 F ( q i ) F(q_i) F(qi),而 F ( q i ) F(q_i) F(qi)代表的刚好是狮子对应位置的特征,所以更新之后会产生移动

⑥对于红色圆区域内的所有点,我们希望它都朝着d的方向移动,所以有最小化
∑ q i ∈ Ω 1 ( p , r 1 ) ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d ) ∣ ∣ 1 \sum\limits_{q_i\in \Omega_1(p,r_1)}||F(q_i).detach()-F(q_i+d)||_1 qiΩ1(p,r1)∣∣F(qi).detach()F(qi+d)1
​ 其中 Ω \Omega Ω表示的是红色圆, q i q_i qi表示属于圆内的像素点。

⑦在实际中,可能不止有一个红色点和蓝色点,可能存在n个,所以
∑ j = 1 n ∑ q i ∈ Ω 1 ( p j , r 1 ) ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d j ) ∣ ∣ 1 \sum\limits_{j=1}^n\sum\limits_{q_i\in \Omega_1(p_j,r_1)}||F(q_i).detach()-F(q_i+d_j)||_1 j=1nqiΩ1(pj,r1)∣∣F(qi).detach()F(qi+dj)1
⑧DragGAN还允许用户选择图像哪些区域不变,哪些区域改变,则设定区域不变性
∑ j = 1 n ∑ q i ∈ Ω 1 ( p j , r 1 ) ∣ ∣ F ( q i ) . d e t a c h ( ) − F ( q i + d j ) ∣ ∣ 1 + λ ∣ ∣ ( F − F 0 ) ∗ ( 1 − M ) ∣ ∣ 1 \sum\limits_{j=1}^n\sum\limits_{q_i\in \Omega_1(p_j,r_1)}||F(q_i).detach()-F(q_i+d_j)||_1 +\lambda||(F-F_0)*(1-M)||_1 j=1nqiΩ1(pj,r1)∣∣F(qi).detach()F(qi+dj)1+λ∣∣(FF0)(1M)1
​ 其中M是一张与特征图F一样大的矩阵,取值0或1,0代表图像的这个区域不改变,1代表可改变。

⑨对上面的损失函数进行优化更新w风格信息,得到新的 w ′ w' w,新的特征图 F ′ F' F。由于梯度下降和方向向量d的正则化的原因,并不能使初始点p一步到位走到目标点t,所以需要从新的特征图 F ′ F' F找到初始点p已经走到哪里了,我们记初始点为在原始特征图上为 f i = F 0 ( p i ) f_i=F_0(p_i) fi=F0(pi)

⑩取新的特征图 F ′ F' F,在初始点p这个位置画一个变长为 r 2 r_2 r2红色正方形(图中第二个特征图),把正方形内的像素点与 F 0 ( p i ) F_0(p_i) F0(pi)作最近邻搜索,长得最像的那个就是皮卡丘,将其作为新的初始点,即
p i : = arg ⁡ min ⁡ q i ∈ Ω 2 ( p i , r 2 ) ∣ ∣ F ′ ( q i ) − f i ∣ ∣ 1 p_i:=\mathop{\arg\min}\limits_{q_i\in\Omega_2(p_i,r_2)}{||F'(q_i)-f_i||_1} pi:=qiΩ2(pi,r2)argmin∣∣F(qi)fi1
: = := :=表示将右边的所得最小对应变量值赋给等式左边

迭代更新,最终使得初始点到达点t点,结束

看不明白?那就看视频吧,文字所能传达的信息有限。我尽力了,私密马赛

4、结束

以上就是DragGAN这篇论文的全部内容了,如有问题,还望指出,阿里嘎多!
在这里插入图片描述

这篇关于【深度学习】AI修图——DragGAN原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/908902

相关文章

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

Mybatis Plus JSqlParser解析sql语句及JSqlParser安装步骤

《MybatisPlusJSqlParser解析sql语句及JSqlParser安装步骤》JSqlParser是一个用于解析SQL语句的Java库,它可以将SQL语句解析为一个Java对象树,允许... 目录【一】jsqlParser 是什么【二】JSqlParser 的安装步骤【三】使用场景【1】sql语

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Java 关键字transient与注解@Transient的区别用途解析

《Java关键字transient与注解@Transient的区别用途解析》在Java中,transient是一个关键字,用于声明一个字段不会被序列化,这篇文章给大家介绍了Java关键字transi... 在Java中,transient 是一个关键字,用于声明一个字段不会被序列化。当一个对象被序列化时,被

Java JSQLParser解析SQL的使用指南

《JavaJSQLParser解析SQL的使用指南》JSQLParser是一个Java语言的SQL语句解析工具,可以将SQL语句解析成为Java类的层次结构,还支持改写SQL,下面我们就来看看它的具... 目录一、引言二、jsQLParser常见类2.1 Class Diagram2.2 Statement

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a