IK分词源码分析连载(三)--歧义处理

2023-10-03 23:40

本文主要是介绍IK分词源码分析连载(三)--歧义处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请注明出处:
http://blog.chinaunix.net/uid-20761674-id-3424553.html
 
前一篇介绍了IK分词源码分析连载(二)--子分词器
开始进入IK分词的另一个核心模块,分词歧义处理,这里使用了组合遍历的一些代码,代码有点绕
总体思路是这样:
  • 从三个子分词器(见前一篇文章)得到的分词结果中取出不相交的分词块,假如分词结果为abcd(abcd代表词),abcd是按其在文本中出现的位置排序的,从前到后。假如a与b相交,b与c相交,c与d不相交,则将分词结果切成abc和d两个块分别处理
  • 如果选择了useSmart(智能分词),则从相交的块中选举一个相对最优的分词结果输出,这是由judge()完成的
  • 如果没有选择useSmart,则输出所有分词结果,包括相交的结果
void process(AnalyzeContext context , boolean useSmart){
QuickSortSet orgLexemes = context.getOrgLexemes();
Lexeme orgLexeme = orgLexemes.pollFirst();
LexemePath crossPath = new LexemePath();
while(orgLexeme != null){
//jw出现不相交的分词,把之前的所有词进行歧义处理
if(!crossPath.addCrossLexeme(orgLexeme)){
//找到与crossPath不相交的下一个crossPath
//jw非智能歧义处理,即使相交,也直接输出分词结果
if(crossPath.size() == 1 || !useSmart){
//crossPath没有歧义 或者 不做歧义处理
//直接输出当前crossPath
context.addLexemePath(crossPath);
}else{
//jw出现一个不相交的分词,将之前相交的词开始歧义处理
//对当前的crossPath进行歧义处理
QuickSortSet.Cell headCell = crossPath.getHead();
LexemePath judgeResult = this.judge(headCell, crossPath.getPathLength());
//输出歧义处理结果judgeResult
context.addLexemePath(judgeResult);
}
//jw只要出现不相交的词,即进行歧义处理,选出当前最优结果,然后继续处理后面的词
//把orgLexeme加入新的crossPath中
crossPath = new LexemePath();
crossPath.addCrossLexeme(orgLexeme);
}
orgLexeme = orgLexemes.pollFirst();
}
//处理最后的path
if(crossPath.size() == 1 || !useSmart){
//crossPath没有歧义 或者 不做歧义处理
//直接输出当前crossPath
context.addLexemePath(crossPath);
}else{
//对当前的crossPath进行歧义处理
QuickSortSet.Cell headCell = crossPath.getHead();
LexemePath judgeResult = this.judge(headCell, crossPath.getPathLength());
//输出歧义处理结果judgeResult
context.addLexemePath(judgeResult);
}

下面来看最重要的judge()方法

/**
* 歧义识别
* @param lexemeCell 歧义路径链表头
* @param fullTextLength 歧义路径文本长度
* @param option 候选结果路径
* @return
*/
private LexemePath judge(QuickSortSet.Cell lexemeCell , int fullTextLength){
//候选路径集合
TreeSet<LexemePath> pathOptions = new TreeSet<LexemePath>();
//候选结果路径
LexemePath option = new LexemePath();
//对crossPath进行一次遍历,同时返回本次遍历中有冲突的Lexeme栈
Stack<QuickSortSet.Cell> lexemeStack = this.forwardPath(lexemeCell , option);
//当前词元链并非最理想的,加入候选路径集合
pathOptions.add(option.copy());  
//jw这种处理方式应该不是最优的,只是采用贪心的方法获取近似最优方案,并没有遍历所有的可能集合
//jw每次从一个歧义位置开始,贪心的获取一种分词方案
//存在歧义词,处理
QuickSortSet.Cell c = null;
while(!lexemeStack.isEmpty()){
System.out.println("jwdebug one option begin");
c = lexemeStack.pop();
//回滚词元链
this.backPath(c.getLexeme() , option);
//从歧义词位置开始,递归,生成可选方案
this.forwardPath(c , option);
pathOptions.add(option.copy());
}
//jw跳转到LexemePath.java中的compareTo()接口查看最优方案选择策略
//返回集合中的最优方案
return pathOptions.first();
}

这个TreeSet用来保存候选分词结果集,并按照排序策略对分词结果集进行排序,排序策略后面说

treeSet<LexemePath> pathOptions = new TreeSet<LexemePath>();

接下来是forwardPath

  • 将相交的分词块传入,进行歧义处理
  • 贪心选择其中不相交的分词结果,存放到分词候选结果集option中
  • 把存在歧义的词,也就是和option中的词相交的词放入conflickStack中
/**
* 向前遍历,添加词元,构造一个无歧义词元组合
* @param LexemePath path
* @return
*/
private Stack<QuickSortSet.Cell> forwardPath(QuickSortSet.Cell lexemeCell , LexemePath option){
//发生冲突的Lexeme栈
Stack<QuickSortSet.Cell> conflictStack = new Stack<QuickSortSet.Cell>();
QuickSortSet.Cell c = lexemeCell;
//迭代遍历Lexeme链表
while(c != null && c.getLexeme() != null){
if(!option.addNotCrossLexeme(c.getLexeme())){
//词元交叉,添加失败则加入lexemeStack栈
conflictStack.push(c);
}
c = c.getNext();
}
return conflictStack;
}

然后就是分词结果组合遍历方法:

  • 从conflictStack中选出一个歧义词c,从option结尾回滚option词元链,直到能放下词c
  • 从词c的位置执行forwardPath,生成一个可选分词结果集
  • 直到conflictStack中的所有歧义词处理完毕
  • 可以看出,该方法没有遍历所有可能的集合,只是从当前替换歧义词的位置贪心的生成其中一种可选方案,只是一种近似最优的选取结果。个人估计,分词的冲突不会太复杂,这样的选取结果可以接受
最后来看分词结果集的排序方案,不复杂,简单做下说明:
  • 比较有效文本长度,有效文本长度是指所有分词结果最靠后的一个词距离最靠前的一个词的长度(这里的靠前和靠后是指词在待匹配文本中的位置)
  • 词元个数,即分出来的词的个数
  • 路径跨度,指所有词的长度的加和
  • 逆向切分、词元长度、位置权重就不解释鸟
public int compareTo(LexemePath o) {
//比较有效文本长度
if(this.payloadLength > o.payloadLength){
return -1;
}else if(this.payloadLength < o.payloadLength){
return 1;
}else{
//比较词元个数,越少越好
if(this.size() < o.size()){
return -1;
}else if (this.size() > o.size()){
return 1;
}else{
//路径跨度越大越好
if(this.getPathLength() > o.getPathLength()){
return -1;
}else if(this.getPathLength() < o.getPathLength()){
return 1;
}else {
//根据统计学结论,逆向切分概率高于正向切分,因此位置越靠后的优先
if(this.pathEnd > o.pathEnd){
return -1;
}else if(pathEnd < o.pathEnd){
return 1;
}else{
//词长越平均越好
if(this.getXWeight() > o.getXWeight()){
return -1;
}else if(this.getXWeight() < o.getXWeight()){
return 1;
}else {
//词元位置权重比较
if(this.getPWeight() > o.getPWeight()){
return -1;
}else if(this.getPWeight() < o.getPWeight()){
return 1;
}                          
}
}
}
}
}
return 0;
}

到此,IK分词中两个最核心的模块:3个子分词器+歧义处理已经介绍完了。到这里,对IK分词的思路应该了解大部分了。

还有几个部分需要考虑:
1.非词典中的词语切不出来,怎么处理的?
2.停用词处理在哪里?
后续会继续介绍



 

这篇关于IK分词源码分析连载(三)--歧义处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908

相关文章

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

Spring Boot 处理带文件表单的方式汇总

《SpringBoot处理带文件表单的方式汇总》本文详细介绍了六种处理文件上传的方式,包括@RequestParam、@RequestPart、@ModelAttribute、@ModelAttr... 目录方式 1:@RequestParam接收文件后端代码前端代码特点方式 2:@RequestPart接

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng