IK分词源码分析连载(三)--歧义处理

2023-10-03 23:40

本文主要是介绍IK分词源码分析连载(三)--歧义处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请注明出处:
http://blog.chinaunix.net/uid-20761674-id-3424553.html
 
前一篇介绍了IK分词源码分析连载(二)--子分词器
开始进入IK分词的另一个核心模块,分词歧义处理,这里使用了组合遍历的一些代码,代码有点绕
总体思路是这样:
  • 从三个子分词器(见前一篇文章)得到的分词结果中取出不相交的分词块,假如分词结果为abcd(abcd代表词),abcd是按其在文本中出现的位置排序的,从前到后。假如a与b相交,b与c相交,c与d不相交,则将分词结果切成abc和d两个块分别处理
  • 如果选择了useSmart(智能分词),则从相交的块中选举一个相对最优的分词结果输出,这是由judge()完成的
  • 如果没有选择useSmart,则输出所有分词结果,包括相交的结果
void process(AnalyzeContext context , boolean useSmart){
QuickSortSet orgLexemes = context.getOrgLexemes();
Lexeme orgLexeme = orgLexemes.pollFirst();
LexemePath crossPath = new LexemePath();
while(orgLexeme != null){
//jw出现不相交的分词,把之前的所有词进行歧义处理
if(!crossPath.addCrossLexeme(orgLexeme)){
//找到与crossPath不相交的下一个crossPath
//jw非智能歧义处理,即使相交,也直接输出分词结果
if(crossPath.size() == 1 || !useSmart){
//crossPath没有歧义 或者 不做歧义处理
//直接输出当前crossPath
context.addLexemePath(crossPath);
}else{
//jw出现一个不相交的分词,将之前相交的词开始歧义处理
//对当前的crossPath进行歧义处理
QuickSortSet.Cell headCell = crossPath.getHead();
LexemePath judgeResult = this.judge(headCell, crossPath.getPathLength());
//输出歧义处理结果judgeResult
context.addLexemePath(judgeResult);
}
//jw只要出现不相交的词,即进行歧义处理,选出当前最优结果,然后继续处理后面的词
//把orgLexeme加入新的crossPath中
crossPath = new LexemePath();
crossPath.addCrossLexeme(orgLexeme);
}
orgLexeme = orgLexemes.pollFirst();
}
//处理最后的path
if(crossPath.size() == 1 || !useSmart){
//crossPath没有歧义 或者 不做歧义处理
//直接输出当前crossPath
context.addLexemePath(crossPath);
}else{
//对当前的crossPath进行歧义处理
QuickSortSet.Cell headCell = crossPath.getHead();
LexemePath judgeResult = this.judge(headCell, crossPath.getPathLength());
//输出歧义处理结果judgeResult
context.addLexemePath(judgeResult);
}

下面来看最重要的judge()方法

/**
* 歧义识别
* @param lexemeCell 歧义路径链表头
* @param fullTextLength 歧义路径文本长度
* @param option 候选结果路径
* @return
*/
private LexemePath judge(QuickSortSet.Cell lexemeCell , int fullTextLength){
//候选路径集合
TreeSet<LexemePath> pathOptions = new TreeSet<LexemePath>();
//候选结果路径
LexemePath option = new LexemePath();
//对crossPath进行一次遍历,同时返回本次遍历中有冲突的Lexeme栈
Stack<QuickSortSet.Cell> lexemeStack = this.forwardPath(lexemeCell , option);
//当前词元链并非最理想的,加入候选路径集合
pathOptions.add(option.copy());  
//jw这种处理方式应该不是最优的,只是采用贪心的方法获取近似最优方案,并没有遍历所有的可能集合
//jw每次从一个歧义位置开始,贪心的获取一种分词方案
//存在歧义词,处理
QuickSortSet.Cell c = null;
while(!lexemeStack.isEmpty()){
System.out.println("jwdebug one option begin");
c = lexemeStack.pop();
//回滚词元链
this.backPath(c.getLexeme() , option);
//从歧义词位置开始,递归,生成可选方案
this.forwardPath(c , option);
pathOptions.add(option.copy());
}
//jw跳转到LexemePath.java中的compareTo()接口查看最优方案选择策略
//返回集合中的最优方案
return pathOptions.first();
}

这个TreeSet用来保存候选分词结果集,并按照排序策略对分词结果集进行排序,排序策略后面说

treeSet<LexemePath> pathOptions = new TreeSet<LexemePath>();

接下来是forwardPath

  • 将相交的分词块传入,进行歧义处理
  • 贪心选择其中不相交的分词结果,存放到分词候选结果集option中
  • 把存在歧义的词,也就是和option中的词相交的词放入conflickStack中
/**
* 向前遍历,添加词元,构造一个无歧义词元组合
* @param LexemePath path
* @return
*/
private Stack<QuickSortSet.Cell> forwardPath(QuickSortSet.Cell lexemeCell , LexemePath option){
//发生冲突的Lexeme栈
Stack<QuickSortSet.Cell> conflictStack = new Stack<QuickSortSet.Cell>();
QuickSortSet.Cell c = lexemeCell;
//迭代遍历Lexeme链表
while(c != null && c.getLexeme() != null){
if(!option.addNotCrossLexeme(c.getLexeme())){
//词元交叉,添加失败则加入lexemeStack栈
conflictStack.push(c);
}
c = c.getNext();
}
return conflictStack;
}

然后就是分词结果组合遍历方法:

  • 从conflictStack中选出一个歧义词c,从option结尾回滚option词元链,直到能放下词c
  • 从词c的位置执行forwardPath,生成一个可选分词结果集
  • 直到conflictStack中的所有歧义词处理完毕
  • 可以看出,该方法没有遍历所有可能的集合,只是从当前替换歧义词的位置贪心的生成其中一种可选方案,只是一种近似最优的选取结果。个人估计,分词的冲突不会太复杂,这样的选取结果可以接受
最后来看分词结果集的排序方案,不复杂,简单做下说明:
  • 比较有效文本长度,有效文本长度是指所有分词结果最靠后的一个词距离最靠前的一个词的长度(这里的靠前和靠后是指词在待匹配文本中的位置)
  • 词元个数,即分出来的词的个数
  • 路径跨度,指所有词的长度的加和
  • 逆向切分、词元长度、位置权重就不解释鸟
public int compareTo(LexemePath o) {
//比较有效文本长度
if(this.payloadLength > o.payloadLength){
return -1;
}else if(this.payloadLength < o.payloadLength){
return 1;
}else{
//比较词元个数,越少越好
if(this.size() < o.size()){
return -1;
}else if (this.size() > o.size()){
return 1;
}else{
//路径跨度越大越好
if(this.getPathLength() > o.getPathLength()){
return -1;
}else if(this.getPathLength() < o.getPathLength()){
return 1;
}else {
//根据统计学结论,逆向切分概率高于正向切分,因此位置越靠后的优先
if(this.pathEnd > o.pathEnd){
return -1;
}else if(pathEnd < o.pathEnd){
return 1;
}else{
//词长越平均越好
if(this.getXWeight() > o.getXWeight()){
return -1;
}else if(this.getXWeight() < o.getXWeight()){
return 1;
}else {
//词元位置权重比较
if(this.getPWeight() > o.getPWeight()){
return -1;
}else if(this.getPWeight() < o.getPWeight()){
return 1;
}                          
}
}
}
}
}
return 0;
}

到此,IK分词中两个最核心的模块:3个子分词器+歧义处理已经介绍完了。到这里,对IK分词的思路应该了解大部分了。

还有几个部分需要考虑:
1.非词典中的词语切不出来,怎么处理的?
2.停用词处理在哪里?
后续会继续介绍



 

这篇关于IK分词源码分析连载(三)--歧义处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说