databricks spark基本使用方法和讲解

2024-04-16 05:12

本文主要是介绍databricks spark基本使用方法和讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

databricks spark基本使用方法

文章目录

  • databricks spark基本使用方法
    • spark dataframe和pandas dataframe区别
      • 概念
      • 小例子:感受下语法差异!
    • 基本使用
      • 生成序列数据
      • 显示数据
      • 查看rdd的分区数和作用
      • 对列进行操作

spark dataframe和pandas dataframe区别

概念

Spark 的 DataFrame 和 pandas 的 DataFrame 在概念上相似,都是用来处理表格数据的,但它们在设计、实现和使用场景上有显著的差异:

Spark DataFrame
1.分布式计算
2.数据存储在集群的多个节点上
3.懒执行(lazy execution)(如调用 .show().collect() 时)才实际执行。

pandas DataFrame
1.单机内存中的数据处理
2.操作(如添加列、过滤等)会立即在 DataFrame 上执行并返回结果。

小例子:感受下语法差异!

为了展现差异,下面同样的意思,让两者分别code,感受下语法的差异

spark dataframe
(一般在databricks上面不用建立session,环境已经帮你配置好了)

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv")
df.na.fill(value=0)  # 填充数字型缺失值为0
df.na.drop()         # 删除任何包含缺失值的行from pyspark.sql.functions import to_date
df.withColumn('new_date', to_date(df['date'], 'yyyy-MM-dd'))from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
def square(x):return x * x
square_udf = udf(square, IntegerType())
df.withColumn('squared', square_udf(df['number']))

pandas dataframe

import pandas as pd
df = pd.read_csv("data.csv")
df.fillna(value=0)   # 填充数字型缺失值为0
df.dropna()          # 删除任何包含缺失值的行
df['new_date'] = pd.to_datetime(df['date'], format='%Y-%m-%d')
df['squared'] = df['number'].apply(lambda x: x * x)

基本使用

生成序列数据

df1 = spark.range(2, 10, 2)
df2 = spark.range(2, 10, 4)

生成的数据的index名字叫做“id",这里的df1为
2,4,6,8
df2的数据为
2,6
因此将两者join的话

df3 = df1.join(df2, ["id"])

df3的结果为2,6

显示数据

df1.show(10)

不指定的话,默认会展示20条数据

查看rdd的分区数和作用

df3.rdd.getNumPartitions()

作用:

  1. 并行度评估:RDD的分区数决定了Spark作业的并行度。每个分区通常由一个核心(core)处理,如果分区数太少,可能无法充分利用集群的所有资源;如果分区数过多,则可能因为调度和管理开销而降低性能。

  2. 性能优化:了解当前的分区数可以帮助你决定是否需要重新分区。通过调整分区数(使用repartition()coalesce()方法),来优化作业的性能

对列进行操作

from pyspark.sql.functions import spark_partition_id
df3.withColumn("partition_id", spark_partition_id()).show()

使用spark_partition_id函数可以帮助获得数据所在的分区的id。这里用withColumn之后返回了一个新的对象(rdd不可变,因此每次的操作实际上都会生成新的对象),并且调用show(),把这个对象使用掉了。如果希望是把分区id加上并且存下来,需要写:

from pyspark.sql.functions import spark_partition_id
df3 = df3.withColumn("partition_id", spark_partition_id())

这里,withColumn实际上是DataFrame API的一部分,而不是直接操作RDD。当在DataFrame上使用withColumn方法时,是在定义一个转换操作,这个操作会在DataFrame的执行计划中被添加。虽然DataFrame是建立在RDD之上的,所有DataFrame的操作最终都会转换成对RDD的操作,但从用户的角度看,withColumn是一个更高级别的抽象,专门用于结构化数据的操作。使用DataFrame API可以使代码更易于理解和维护,并且可以利用Spark的优化引擎(如Catalyst优化器和Tungsten执行引擎)来提高性能。

对列的数据进行统计

df2.withColumn("partition_id", spark_partition_id()              ).groupBy("partition_id").count().show()

这篇关于databricks spark基本使用方法和讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907862

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时