BZOJ3884. 上帝与集合的正确用法(欧拉定理,广义欧拉降幂)

2024-04-16 01:38

本文主要是介绍BZOJ3884. 上帝与集合的正确用法(欧拉定理,广义欧拉降幂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了109次元素,或1018次,或者干脆∞次。
一句话题意:

Input
接下来T行,每行一个正整数p,代表你需要取模的值
Output
T行,每行一个正整数,为答案对p取模后的值
Sample Input
3
2
3
6
Sample Output
0
1
4
Hint
对于100%的数据,T<=1000,p<=10^7

Source
By PoPoQQQ

思路:
欧拉定理:𝑎𝜑(𝑛) ≡ 1(𝑚𝑜𝑑 𝑛) .
降幂公式
在这里插入图片描述
因为大于2的欧拉函数值均为偶数,所以一定满足降幂公式的第三条
定义 f ( p ) f(p) f(p) 为模p时的答案,易知 f ( 1 ) = 0 f(1) = 0 f(1)=0
f ( p ) = 2 f(p) = 2 f(p)=22… (mod p) = 22…mod𝜑(𝑝)+𝜑(𝑝) = 2f(𝜑(𝑝))+𝜑(𝑝)
递归地计算 f f f函数即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>using namespace std;typedef long long ll;ll qpow(ll x,ll n,ll mod)
{ll res = 1;while(n){if(n & 1)res = (res * x) % mod;x = x * x % mod;n >>= 1;}return res;
}ll phi(ll n)
{int m = (int)sqrt(n + 0.5);ll ans = n;for(int i = 2;i <= m;i++){if(n % i == 0){ans = ans / i * (i - 1);while(n % i == 0) n /= i;}}if(n > 1)ans = ans / n * (n - 1);return ans;
}ll f(ll p)
{if(p == 1) return 0;ll Phi = phi(p);return qpow(2,f(Phi) + Phi,p);
}int main()
{int T;scanf("%d",&T);while(T--){ll p;scanf("%lld",&p);printf("%lld\n",f(p));}return 0;
}

这篇关于BZOJ3884. 上帝与集合的正确用法(欧拉定理,广义欧拉降幂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907485

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

Java中如何正确的停掉线程

《Java中如何正确的停掉线程》Java通过interrupt()通知线程停止而非强制,确保线程自主处理中断,避免数据损坏,线程池的shutdown()等待任务完成,shutdownNow()强制中断... 目录为什么不强制停止为什么 Java 不提供强制停止线程的能力呢?如何用interrupt停止线程s

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创