JavaScript排序大揭秘:手绘图解6大常见排序算法,一网打尽

2024-04-15 23:44

本文主要是介绍JavaScript排序大揭秘:手绘图解6大常见排序算法,一网打尽,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

 📫 大家好,我是南木元元,热爱技术和分享,欢迎大家交流,一起学习进步!

 🍅 个人主页:南木元元

本文用图解总结梳理了6种常见的排序算法 ,如下👇:

  • 冒泡排序 
  • 选择排序
  • 插入排序
  • 快速排序
  • 归并排序
  • 堆排序

目录

 一.冒泡排序

思路及图解

代码实现

二.选择排序

思路及图解

代码实现

三.插入排序

思路及图解

代码实现

四.快速排序

思路及图解

代码实现

五.归并排序

思路及图解

代码实现

六.堆排序

思路及图解

代码实现

结语


一.冒泡排序

思路及图解

  • 基本思路

冒泡排序的基本思路:比较相邻的两个元素,将较大的元素交换到后面。通过多次遍历和两两比较,使得每一轮遍历都能确定一个当前未排序元素的最终位置,直至所有元素有序。

  • 冒泡排序图解

时间复杂度:O(n^2);空间复杂度:O(1)

代码实现

下面是用 JavaScript 实现的冒泡排序代码:

function bubbleSort(arr) {//外循环控制比较次数:n-1次for (let i = 0; i < arr.length - 1; i++) {// 内循环控制比较元素for (let j = 0; j < arr.length - 1 - i; j++) {// 如果前一个元素比后一个元素大,则交换它们的位置if (arr[j] > arr[j + 1]) {[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]]; }}}return arr;
}// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(bubbleSort(arr));
// 输出:[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
  • 优化版

如果在某一轮比较中没有发生元素交换,则说明数组已经有序,可以提前结束排序过程。

function bubbleSort(arr) {let flag; // 标记位for (let i = 0; i < arr.length; i++) {flag = false;for (let j = 0; j < arr.length - 1 - i; j++) {if (arr[j] > arr[j + 1]) {flag = true; // 发生了交换[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];}}if (!flag) break; // 如果一轮比较后没有发生交换,说明已经有序}return arr;
}

二.选择排序

思路及图解

  • 基本思路

选择排序的基本思路:每次从未排序的部分中选择最小(或最大)的元素,然后将其与未排序部分的第一个元素交换位置,直到整个数组排序完成。

  • 选择排序图解

时间复杂度:O(n^2);空间复杂度:O(1) 

代码实现

下面是用 JavaScript 实现的选择排序代码:

function selectSort(arr) {for (let i = 0; i < arr.length - 1; i++) {let minIndex = i; // 假设当前位置是最小值的位置// 在未排序部分找到最小元素的索引 for (let j = i + 1; j < arr.length; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}// 如果当前循环的索引不是最小数的索引,交换它们if(i !== minIndex) {[arr[i], arr[minIndex]] = [arr[minIndex], arr[i]];}}return arr;
}// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(selectSort(arr));
// 输出:[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

三.插入排序

思路及图解

  • 基本思路

基本思想:将待排序的数组分成已排序区间和未排序区间,初始时已排序区间只有一个元素,然后逐步将未排序区间的元素插入到已排序区间的合适位置,直到整个数组排序完成。

整个过程就像打扑克牌,从牌堆顶取一张牌,找到合适的位置插入到已有牌的顺序中。

  • 插入排序图解 

时间复杂度:O(n^2);空间复杂度:O(1) 

代码实现

下面是用 JavaScript 实现的插入排序代码:

function insertionSort(arr) {for (let i = 1; i < arr.length; i++) {// 当前待插入的元素let current = arr[i]; let j = i - 1;// 将大于当前元素的元素都向后移动while (j >= 0 && arr[j] > current) {arr[j + 1] = arr[j];j--;}// 找到合适的位置插入当前元素arr[j + 1] = current; }return arr;
}// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(insertionSort(arr));
// 输出:[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

四.快速排序

思路及图解

  • 基本思路

快排采用分治的思想,选择一个基准元素,将数组分割成两个子数组,小于基准元素的放在左边,大于基准元素的放在右边,然后对这两个子数组进行递归排序,直到左右两部分只剩下一个数。

  • 快速排序图解

时间复杂度:O(nlogn);空间复杂度:O(logn)

代码实现

下面是用 JavaScript 实现的快速排序代码:

function quickSort(arr) {//递归出口,如果数组长度小于等于1,直接返回数组,无需排序if (arr.length <= 1) {return arr; }// 选取数组的第一个元素作为基准元素const pivot = arr[0]; // 用于存放小于等于基准元素的部分const left = []; // 用于存放大于基准元素的部分const right = []; // 将小于等于基准元素的数放入 left 数组,大于基准元素的放入 right 数组for (let i = 1; i < arr.length; i++) {if (arr[i] <= pivot) {left.push(arr[i]); } else {right.push(arr[i]);  }}// 递归地对左右两个部分进行排序return [...quickSort(left), pivot, ...quickSort(right)];
}// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(quickSort(arr));
// 输出:[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

五.归并排序

思路及图解

  • 基本思路

归并排序是一种经典的分治算法,核心思想是将待排序数组分成若干个子序列,分别进行排序,然后将已排序的子序列合并成更大的有序序列,直到整个数组排序完成。

  • 归并排序图解

 时间复杂度:O(nlogn);空间复杂度:O(n)

代码实现

下面是用 JavaScript 实现的归并排序代码:

function mergeSort(arr) {// 如果数组长度小于 2,不需要排序,直接返回if (arr.length < 2) {return arr;}let mid = Math.floor(len / 2);// 将数组从中间位置分为左右两个子数组let l = arr.slice(0, mid);let r = arr.slice(mid);// 递归调用mergeSort对左右两个子数组进行排序,并将结果合并return merge(mergeSort(l), mergeSort(r));
}function merge(left, right) {let arr = [];// 排序并合并两个数组while (left.length && right.length) {if (left[0] <= right[0]) {arr.push(left.shift());} else {arr.push(right.shift());}}// 合并左右子数组中剩余的元素return arr.concat(left, right); 
}// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(mergeSort(arr));
// 输出:[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

六.堆排序

思路及图解

  • 基本思路

堆排序的基本思路:先将待排序的数组构建成一个最大堆(或最小堆),然后依次将堆顶元素与堆尾元素交换并重新调整堆,重复这个过程直到整个数组排序完成。

1.构建最大堆。将待排序的数组视为完全二叉树,从最后一个非叶子节点开始,依次向前调整节点,使得每个节点都满足父节点的值大于或等于子节点的值。

2.交换并调整堆。将堆顶元素(即当前最大的元素)与堆尾元素交换,然后重新调整剩余的元素,使得剩余元素重新构成一个最大堆。重复这个过程,直到所有元素都被排序完成。

  • 堆排序图解

 时间复杂度:O(nlogn);空间复杂度:O(1)

代码实现

下面是用 JavaScript 实现的堆排序代码:

// 调整堆,使得剩余元素重新构成最大堆
function heapify(arr, n, i) {let l = i * 2 + 1;let r = i * 2 + 2;let max = i;// 找出左右子节点和当前节点中的最大值if (l < n && arr[l] > arr[max]) {max = l;}if (r < n && arr[r] > arr[max]) {max = r;}// 如果最大值不是当前节点,交换节点并继续调整堆if (max !== i) {[arr[max], arr[i]] = [arr[i], arr[max]];heapify(arr, n, max);}
}
// 堆排序
function heapSort(arr) {let len = arr.length;// 建立大根堆,从最后一个非叶子节点开始let last = Math.floor((len - 2) / 2);for (let i = last; i >= 0; i--) {heapify(arr, len, i);}// 每次把堆顶的数与最后一个数交换,并重新调整堆for (let i = 0; i < len; i++) {[arr[0], arr[len - 1 - i]] = [arr[len - 1 - i], arr[0]];heapify(arr, len - 1 - i, 0);}return arr;
}// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(heapSort(arr));
// 输出:[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

结语

🔥如果此文对你有帮助的话,欢迎💗关注、👍点赞、⭐收藏、✍️评论,支持一下博主~ 

这篇关于JavaScript排序大揭秘:手绘图解6大常见排序算法,一网打尽的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907251

相关文章

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte