计算方法实验5:对鸢尾花数据集进行主成分分析(PCA)并可视化

本文主要是介绍计算方法实验5:对鸢尾花数据集进行主成分分析(PCA)并可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

任务

iris数据集包含150条数据,从iris.txt读取,每条数据有4个属性值和一个标签(标签取值为0,1,2)。要求对这150个4维数据进行PCA,可视化展示这些数据在前两个主方向上的分布,其中不同标签的数据需用不同的颜色或形状加以区分。

算法

m个n维数据向量去中心化后(各向量的每个维度减去这个维度在所有向量上均值),按列排列构成矩阵 X n × m \mathbf{X}_{n\times m} Xn×m,计算协方差矩阵 V a r n × n = 1 m X X T \mathbf{Var}_{n\times n}= \frac{1}{m}\mathbf{XXT} Varn×n=m1XXT的特征值,选取最大两个特征值对应的特征向量构成矩阵 P 2 × n \mathbf{P}_{2\times n} P2×n,则 Y 2 × m = P X \mathbf{Y}_{2\times m}=\mathbf{PX} Y2×m=PX即PCA后的结果,也就是把四维数据压缩为二维,每个数据对应二维平面上的一个点。
对PCA的详解,可以参考这篇文章;关于PCA与奇异值分解的联系,可以参考这篇文章;关于如何用C++求矩阵特征值(Jacobi方法)和特征向量及对矩阵进行奇异值分解,可以参考这篇文章。

代码

C++实现PCA

#include<bits/stdc++.h>
using namespace std;// 读取鸢尾花数据集到一个二维数组中
vector<vector<long double>> readIrisData(const string& filename);// 读取第五列的值到一个向量中
vector<long double> readfifthValue(const string& filename);// 从矩阵 A 非对角元中选择最大的元素,并返回其位置
pair<int, int> chooseMax(vector<vector<long double>> A);// 计算矩阵 A 的转置
vector<vector<long double>> calAT(vector<vector<long double>> A);// 计算矩阵 A 和其转置的乘积
vector<vector<long double>> calAAT(vector<vector<long double>> A);// 计算矩阵Q^T * A * Q的每个元素,使用给定的参数 p, q, t, c, d
long double calculateElement(const vector<vector<long double>> A, int i, int j, long double p, long double q, long double t, long double c, long double d);// 计算矩阵 Q^T * A * Q
vector<vector<long double>> calQTAQ(vector<vector<long double>> A);// 判断Jacobi迭代方法是否满足结束条件
int judgeEnd(vector<vector<long double>> A);// 计算矩阵 A 的特征值
vector<long double> calEigenValue(vector<vector<long double>> A);// 对矩阵 A 进行列主元化成上三角
vector<vector<long double>> Column_Elimination(vector<vector<long double>> A);// 求解系数矩阵为上三角矩阵A的线性方程组
vector<long double> SolveUpperTriangle(vector<vector<long double>> A, vector<long double> b);// 解系数矩阵为上三角矩阵 A 的线性方程组,且A全为0的行数为 cnt
vector<vector<long double>> solve(vector<vector<long double>> A, int cnt);// 计算矩阵 A 的特征向量,使用给定的特征值
vector<vector<long double>> calEigenVector(vector<vector<long double>> A, vector<long double> eigenValue);// 计算 Sigma 矩阵,使用给定的特征值 x 和矩阵的行数 n1 和列数 n2
vector<vector<long double>> calSigma(vector<long double> x,int n1, int n2);// 计算向量 x 的欧几里得范数
long double EuclideanNorm(vector<long double> x);// 对矩阵 A 进行归一化
vector<vector<long double>> Normalization(vector<vector<long double>> A);// 计算矩阵 A 和 B 的乘积
vector<vector<long double>> multiplyMatrices(const vector<vector<long double>> A, const vector<vector<long double>> B);int main()
{vector<vector<long double>> X = calAT(readIrisData("iris.txt"));int n1 = X.size();int n2 = X[0].size();long double sum = 0;for(int i = 0; i < n1; i++){long double sum = 0;for(int j = 0; j < n2; j++)sum += X[i][j];long double avg = sum / n2;for(int j = 0; j < n2; j++)X[i][j] -= avg;}cout << "X: " << endl;for(int i = 0; i < n1; i++){for(int j = 0; j < n2; j++)cout << X[i][j] << " ";cout << endl;}vector<vector<long double>> XT = calAT(X);vector<vector<long double>> XXT = multiplyMatrices(X, XT);vector<vector<long double>> Var(n1, vector<long double>(n1));for(int i = 0; i < n1; i++)for(int j = 0; j < n1; j++)Var[i][j] = XXT[i][j] / n2;vector<long double> x =calEigenValue(Var);sort(x.begin(), x.end());reverse(x.begin(), x.end());cout<<"特征值:"<<endl;for(int i = 0; i < n1; i++)cout << x[i] << " ";vector<long double> x1;x1.reserve(x.size());unique_copy(x.begin(), x.end(), back_inserter(x1));vector<vector<long double>> EigenVector = Normalization(calEigenVector(Var, x1));vector<vector<long double>> P(EigenVector.begin(), next(EigenVector.begin(), 2));cout << "P: " << endl;for(int i = 0; i < 2; i++){for(int j = 0; j < n1; j++)cout << P[i][j] << " ";cout << endl;}vector<vector<long double>> Y = multiplyMatrices(P, X);cout << "Y: " << endl;for(int i = 0; i < 2; i++){for(int j = 0; j < n2; j++)cout << Y[i][j] << " ";cout << endl;}return 0;
}// 读取鸢尾花数据集到一个二维数组中
vector<vector<long double>> readIrisData(const string& filename) {ifstream file(filename);vector<vector<long double>> X;string line;while (getline(file, line)) {stringstream ss(line);vector<long double> row;string value;int counter = 0;while (getline(ss, value, ',') && counter < 4) {row.push_back(stod(value));counter++;}X.push_back(row);}return X;
}// 读取第五列的值到一个向量中
vector<long double> readfifthValue(const string& filename) {ifstream file(filename);vector<long double> fifthValues;string line;while (getline(file, line)) {stringstream ss(line);string value;int counter = 0;while (getline(ss, value, ',') && counter < 4) {counter++;}if (counter == 4) { long double fifthValue = stold(value);fifthValues.push_back(fifthValue);}}return fifthValues;
}// 找到矩阵 A 中非对角元中绝对值最大的元素,并返回其位置
pair<int, int> chooseMax(vector<vector<long double>> A)
{long double max = 0;pair<int, int> maxPos;int n = A.size();for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)if(i != j && fabsl(A[i][j]) > max){max = fabsl(A[i][j]);maxPos = make_pair(i, j);}return maxPos;
}// 计算矩阵 A 的转置
vector<vector<long double>> calAT(vector<vector<long double>> A)
{int n1 = A.size();int n2 = A[0].size();vector<vector<long double>> AT(n2, vector<long double>(n1));for(int i = 0; i < n1; i++)for(int j = 0; j < n2; j++)AT[j][i] = A[i][j];return AT;
}// 计算两个矩阵的乘积
vector<vector<long double>> multiplyMatrices(const vector<vector<long double>> A, const vector<vector<long double>> B) {int n1 = A.size();int n2 = B[0].size();int n3 = A[0].size();vector<vector<long double>> result(n1, vector<long double>(n2, 0.0));for(int i = 0; i < n1; i++) {for(int j = 0; j < n2; j++) {for(int k = 0; k < n3; k++) {result[i][j] += A[i][k] * B[k][j];}}}return result;
}// 计算矩阵Q^T * A * Q的每个元素,使用给定的参数 p, q, t, c, d
long double calculateElement(const vector<vector<long double>> A, int i, int j, long double p, long double q, long double t, long double c, long double d) {if (i == p && j == p)return A[p][p] - t * A[p][q];else if (i == q && j == q)return A[q][q] + t * A[p][q];else if ((i == p && j == q) || (i == q && j == p))return 0;else if (i != q && i != p && (j == p || j == q))return (j == p ? c : d) * A[p][i] - (j == p ? d : (-c)) * A[q][i];else if ((i == p || i == q) && j != q && j != p)return (i == p ? c : d) * A[p][j] - (i == p ? d : (-c)) * A[q][j];elsereturn A[i][j];
}// 计算矩阵 Q^T * A * Q
vector<vector<long double>> calQTAQ(vector<vector<long double>> A)
{int n = A.size();pair<int, int> maxPos = chooseMax(A);int row = maxPos.first;int col = maxPos.second;long double s = (A[col][col] - A[row][row]) / (2 * A[row][col]);long double t = 0;if(s == 0)t = 1;else if(abs(-s + sqrt(1 + s * s)) <= abs(-s - sqrt(1 + s * s)))t = -s + sqrt(1 + s * s);elset = -s - sqrt(1 + s * s);long double c = 1 / sqrt(1 + t * t);long double d = t * c;vector<vector<long double>> QTAQ(n, vector<long double>(n));for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)QTAQ[i][j] = calculateElement(A, i, j, row, col, t, c, d);return QTAQ;
}// 判断Jacobi迭代方法是否满足结束条件
int judgeEnd(vector<vector<long double>> A)
{int i, j;int n = A.size();for(i = 0; i < n; i++)for(j = 0; j < n; j++)if(i != j && fabsl(A[i][j]) >= 1e-6)return 0;if(i == n && j == n) return 1;
}// 计算矩阵 A 的特征值
vector<long double> calEigenValue(vector<vector<long double>> A)
{int n = A.size();vector<long double> eigenValue(n);vector<vector<long double>> QTAQ= calQTAQ(A);int i, j;while(!judgeEnd(QTAQ))QTAQ = calQTAQ(QTAQ);for(i = 0; i < n; i++)eigenValue[i] =QTAQ[i][i];return eigenValue;
}// 对矩阵 A 进行列主元化成上三角
vector<vector<long double>> Column_Elimination(vector<vector<long double>> A)
{int n = A.size();vector<vector<long double>> Temp(n, vector<long double>(n));for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)Temp[i][j] = A[i][j];for(int col = 0; col < n; col++){long double maxnum = abs(Temp[col][col]);int maxrow = col;for(int row = col + 1; row < n; row++){if(abs(Temp[row][col]) > maxnum){maxnum = abs(Temp[row][col]);maxrow = row;}}swap(Temp[col], Temp[maxrow]);for(int row = col + 1; row < n; row++){long double res = Temp[row][col] / Temp[col][col];for(int loc = col; loc < n; loc++)Temp[row][loc] -= Temp[col][loc] * res; }}return Temp;
}// 求解系数矩阵为上三角矩阵A的线性方程组
vector<long double> SolveUpperTriangle(vector<vector<long double>> A, vector<long double> b)
{int n = A.size();vector<long double> x(n);vector<vector<long double>> Temp(n, vector<long double>(n+1));for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)Temp[i][j] = A[i][j];for(int i = 0; i < n; i++)Temp[i][n] = b[i];for(int row = n-1; row >= 0; row--){for(int col = row + 1; col < n; col++){Temp[row][n] -= Temp[col][n] * Temp[row][col] / Temp[col][col];Temp[row][col] = 0;}Temp[row][n] /= Temp[row][row];Temp[row][row] = 1;}for(int i = 0; i < n; i++)x[i] = Temp[i][n];return x;
}// 解系数矩阵为上三角矩阵 A 的线性方程组,且A全为0的行数为 cnt
vector<vector<long double>> solve(vector<vector<long double>> A, int cnt)
{int n = A.size();vector<vector<long double>> x(cnt, vector<long double>(n));vector<vector<long double>> Temp(n-cnt, vector<long double>(n-cnt));vector<long double> Tempb(n-cnt);for(int i = 0; i < cnt; i++){for(int j = n - 1; j >= n - cnt; j--){if(j >= n - i)x[i][j] = 0;elsex[i][j] = 1;}}for(int i = 0; i < n - cnt; i++)for(int j = 0; j < n - cnt; j++)Temp[i][j] = A[i][j];for(int i = 0; i < cnt; i++){for(int j = n - cnt - 1; j >=  0; j--){Tempb[j] = 0;for(int k = 0; k < cnt; k++)Tempb[j] -= A[j][n- cnt + k] * x[i][n- cnt + k];}vector<long double> res = SolveUpperTriangle(Temp, Tempb);for(int j = 0; j < n - cnt; j++)x[i][j] = res[j];}return x;
}// 使用给定的特征值计算矩阵 A 的特征向量
vector<vector<long double>> calEigenVector(vector<vector<long double>> A, vector<long double> eigenValue)
{int n = A.size();int num = 0;vector<vector<long double>> x(n, vector<long double>(n));vector<vector<long double>> tempMartix(n, vector<long double>(n));vector<vector<long double>> eigenVector(n, vector<long double>(n));for(int k = 0; k < n; k++){for(int i = 0; i < n; i++)for(int j = 0; j < n; j++)i == j ? tempMartix[i][j] = A[i][j] - eigenValue[k] : tempMartix[i][j] = A[i][j];vector<vector<long double>> B = Column_Elimination(tempMartix);int cnt = 0;//记录消元后全为0的行数for(int i = 0; i < n; i++){for(int j = 0; j < n; j++){if(fabsl(B[i][j]) > 1e-7)break;else if(j == n - 1)cnt++;}}vector<vector<long double>> result = solve(B, cnt);for(int i = 0; i < cnt; i++)copy(result[i].begin(), result[i].end(), x[num + i].begin());num += cnt;}return x;
}// 使用给定的特征值 x 和矩阵的行数 n1 和列数 n2,计算 Sigma 矩阵
vector<vector<long double>> calSigma(vector<long double> x, int n1, int n2)
{vector<vector<long double>> Sigma(n1, vector<long double>(n2));for(int i = 0; i < min(n1, n2); i++)Sigma[i][i] = sqrt(x[i]);return Sigma;
}// 计算向量 x 的欧几里得范数
long double EuclideanNorm(vector<long double> x)
{long double norm = 0;for(int i = 0; i < x.size(); i++)norm += x[i] * x[i];return sqrt(norm);
}// 对矩阵 A 进行归一化
vector<vector<long double>> Normalization(vector<vector<long double>> A)
{int rows = A.size();for(int i = 0; i < rows; i++){long double norm = EuclideanNorm(A[i]);int cols = A[i].size();for(int j = 0; j < cols; j++)A[i][j] /= norm;}return A;
}

python实现PCA并将结果可视化

import numpy as np
from scipy.linalg import eigh
import matplotlib.pyplot as pltdef readIrisData(filename):data = np.genfromtxt(filename, delimiter=',', dtype='float', encoding=None)return data[:, :4].T, data[:, 4]X, labels = readIrisData("iris.txt")Var = np.cov(X)
x, EigenVector = eigh(Var)
x = sorted(x, reverse=True)P = EigenVector[:, -2:].T
Y = np.dot(P, X)plt.figure()
label_set = set(labels)
colors = ['r', 'g', 'b']
shapes = ['o', 's', '^']for i, label in enumerate(label_set):#enumerate函数返回每个标签及其索引x = [Y[0, j] for j in range(Y.shape[1]) if labels[j] == label]y = [Y[1, j] for j in range(Y.shape[1]) if labels[j] == label]plt.scatter(x, y, color=colors[i], marker=shapes[i], label=label)plt.legend()#添加图例
plt.show()

可视化结果

在这里插入图片描述

这篇关于计算方法实验5:对鸢尾花数据集进行主成分分析(PCA)并可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906576

相关文章

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查