Python3实现单级库存仿真,single echelon inventory assessment

本文主要是介绍Python3实现单级库存仿真,single echelon inventory assessment,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考代码的来源:
https://github.com/anshul-musing/single-echelon-inventory-assessment/blob/master/src/simpy_3.0/simLostSales.py

src/simpy_3.0/simBackorder.py

这段代码主要模拟单级供应链,所考虑的库存参数为在途库存、库存水平、服务水平。
假设这个系统采用的是“一旦库存水平低于再订货点(固定),管理者立即下订单(固定)”的订货策略。
假设当前未被满足的订单允许被后期的补货满足,
基于订单有多晚被满足 ,计算服务水平。
假设需求服从正态分布、提前期服从均匀分布。

"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is backordered
and is fulfilled whenever the material is available in the
inventory.  The service level is estimated based on how
late the order was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object): ## ?? why we need to in herit 'object'?# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROP # inventory positionself.ROQ = ROQ # fixed order quantityself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalBackOrder = 0.0self.totalLateSales = 0.0self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)# demand newly generateddemand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demand# shipment 是该仓库送出的量,而self.ROQ是该仓库的补货量shipment = min(demand + self.totalBackOrder, self.on_hand_inventory) # the amount of goods available to sendself.on_hand_inventory -= shipment # send the shipment to some retailerself.inventory_position -= shipmentbackorder = demand - shipment # the amount of demand unmet temporarilyself.totalBackOrder += backorderself.totalLateSales += max(0.0, backorder)# if the current inventory position is less than ROP, then place an orderif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))# why we revise 'self.on_hand_inv' in the method 'ship', and revise 'self.inv_position' outside 'ship'self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):# recall that we assume the lead time follows an uniform distributionleadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before delivering# now 'orderQty' goods is receivedself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = 1 - s.totalLateSales / s.totalDemand # 服务水平的定义:那些被及时满足的需求的占比return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

src/simpy_3.0/simLostSales.py

不同于上一小节的地方在于,这里不允许回购,而是允许发生销售损失(lost sales)。
因此,在代码实现方面也会有微妙的差别,具体如下,

  1. 在类stockingFacility中数据self.totalShipped用于记录从这个仓库发出了多少货;
  2. 在类stockingFacility的方法runOperation中,当前从该仓库的送出量shipment的计算方式不再考虑backorder;
  3. 在函数simulateNetwork中,计算服务水平(从该仓库的送出量占总需求量的比例)。
"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is lost
The service level is estimated based on how much
of the demand was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object):# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROPself.ROQ = ROQself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalShipped = 0.0 # !!self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demandshipment = min(demand, self.on_hand_inventory) # !!self.totalShipped += shipmentself.on_hand_inventory -= shipmentself.inventory_position -= shipmentif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before deliveringself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = s.totalShipped / s.totalDemand # !!return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

这篇关于Python3实现单级库存仿真,single echelon inventory assessment的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906506

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1