Python3实现单级库存仿真,single echelon inventory assessment

本文主要是介绍Python3实现单级库存仿真,single echelon inventory assessment,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考代码的来源:
https://github.com/anshul-musing/single-echelon-inventory-assessment/blob/master/src/simpy_3.0/simLostSales.py

src/simpy_3.0/simBackorder.py

这段代码主要模拟单级供应链,所考虑的库存参数为在途库存、库存水平、服务水平。
假设这个系统采用的是“一旦库存水平低于再订货点(固定),管理者立即下订单(固定)”的订货策略。
假设当前未被满足的订单允许被后期的补货满足,
基于订单有多晚被满足 ,计算服务水平。
假设需求服从正态分布、提前期服从均匀分布。

"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is backordered
and is fulfilled whenever the material is available in the
inventory.  The service level is estimated based on how
late the order was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object): ## ?? why we need to in herit 'object'?# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROP # inventory positionself.ROQ = ROQ # fixed order quantityself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalBackOrder = 0.0self.totalLateSales = 0.0self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)# demand newly generateddemand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demand# shipment 是该仓库送出的量,而self.ROQ是该仓库的补货量shipment = min(demand + self.totalBackOrder, self.on_hand_inventory) # the amount of goods available to sendself.on_hand_inventory -= shipment # send the shipment to some retailerself.inventory_position -= shipmentbackorder = demand - shipment # the amount of demand unmet temporarilyself.totalBackOrder += backorderself.totalLateSales += max(0.0, backorder)# if the current inventory position is less than ROP, then place an orderif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))# why we revise 'self.on_hand_inv' in the method 'ship', and revise 'self.inv_position' outside 'ship'self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):# recall that we assume the lead time follows an uniform distributionleadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before delivering# now 'orderQty' goods is receivedself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = 1 - s.totalLateSales / s.totalDemand # 服务水平的定义:那些被及时满足的需求的占比return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

src/simpy_3.0/simLostSales.py

不同于上一小节的地方在于,这里不允许回购,而是允许发生销售损失(lost sales)。
因此,在代码实现方面也会有微妙的差别,具体如下,

  1. 在类stockingFacility中数据self.totalShipped用于记录从这个仓库发出了多少货;
  2. 在类stockingFacility的方法runOperation中,当前从该仓库的送出量shipment的计算方式不再考虑backorder;
  3. 在函数simulateNetwork中,计算服务水平(从该仓库的送出量占总需求量的比例)。
"""This module simulates a single-echelon supply chain
and calculates inventory profile (along with associated inventory
parameters such as on-hand, inventory position, service level, etc.)
across timeThe system follows a reorder point-reorder quantity policy
If inventory position <= ROP, an order of a fixed reorder
quantity (ROQ) is placed by the facilityIt is assumed that any unfulfilled order is lost
The service level is estimated based on how much
of the demand was fulfilledDemand is assumed to be Normally distributed
Lead time is assumed to follow a uniform distribution
"""__author__ = 'Anshul Agarwal'import simpy
import numpy as np# Stocking facility class
class stockingFacility(object):# initialize the new facility objectdef __init__(self, env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):self.env = envself.on_hand_inventory = initialInvself.inventory_position = initialInvself.ROP = ROPself.ROQ = ROQself.meanDemand = meanDemandself.demandStdDev = demandStdDevself.minLeadTime = minLeadTimeself.maxLeadTime = maxLeadTimeself.totalDemand = 0.0self.totalShipped = 0.0 # !!self.serviceLevel = 0.0env.process(self.runOperation())# main subroutine for facility operation# it records all stocking metrics for the facilitydef runOperation(self):while True:yield self.env.timeout(1.0)demand = float(np.random.normal(self.meanDemand, self.demandStdDev, 1))self.totalDemand += demandshipment = min(demand, self.on_hand_inventory) # !!self.totalShipped += shipmentself.on_hand_inventory -= shipmentself.inventory_position -= shipmentif self.inventory_position <= 1.01 * self.ROP:  # multiply by 1.01 to avoid rounding issuesself.env.process(self.ship(self.ROQ))self.inventory_position += self.ROQ# subroutine for a new order placed by the facilitydef ship(self, orderQty):leadTime = int(np.random.uniform(self.minLeadTime, self.maxLeadTime, 1))yield self.env.timeout(leadTime)  # wait for the lead time before deliveringself.on_hand_inventory += orderQty# Simulation module
def simulateNetwork(seedinit, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime):env = simpy.Environment()  # initialize SimPy simulation instancenp.random.seed(seedinit)s = stockingFacility(env, initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)env.run(until=365)  # simulate for 1 years.serviceLevel = s.totalShipped / s.totalDemand # !!return s######## Main statements to call simulation ########
meanDemand = 500.0
demandStdDev = 100.0
minLeadTime = 7
maxLeadTime = 13
CS = 5000.0
ROQ = 6000.0
ROP = max(CS,ROQ)
initialInv = ROP + ROQ# Simulate
replications = 100
sL = []
for i in range(replications):nodes = simulateNetwork(i,initialInv, ROP, ROQ, meanDemand, demandStdDev, minLeadTime, maxLeadTime)sL.append(nodes.serviceLevel)sLevel = np.array(sL)
print("Avg. service level: " + str(np.mean(sLevel)))
print("Service level standard deviation: " + str(np.std(sLevel)))

这篇关于Python3实现单级库存仿真,single echelon inventory assessment的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906506

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核