Flume之使用Failover Sink Processor实现sink故障转移

2024-04-15 14:58

本文主要是介绍Flume之使用Failover Sink Processor实现sink故障转移,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


前言

  • Failover Sink Processor 维护着Sink组中Sinks的优先级表,根据优先级尝试将Event传输给不同的Sink直到Event成功发送。当优先级高的Sink不可用时,会将Event传输给下一优先级Sink,以此来确保每个Event都能被投递。当Sink不可用时,Failover Sink Processor和Load balancing Sink Processor一样,也会进行指数回退backoff,并可以设置最大回退时间(即在黑名单中的保存时间),在倒计时结束后会再次尝试访问之前挂掉的Sink

使用示例

1)flume1.properties

# flume1:此配置用于监控某个窗口将其追加内容输出到flume2和flume3中
# 并将两个Sink组成一个sink group,并将Sink Processor设置成Failover类型
# a1:Netcat Source->Memory Channel->Avro Sink# Agent
a1.sources = r1
a1.channels = c1
a1.sinks = k1 k2# Sink groups
a1.sinkgroups = g1
# 设置sink group中的sinks
a1.sinkgroups.g1.sinks = k1 k2
# 设置Failover sink processor(只有sink group才可以使用sink processor)
a1.sinkgroups.g1.processor.type = failover
# 设置Failover sink processor优先级表
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
# 设置最大避让时间(ms)
a1.sinkgroups.g1.processor.maxpenalty = 10000# Sources
# 配置a1.sources.r1的各项属性参数,类型/绑定主机ip/端口号
a1.sources.r1.type = netcat
a1.sources.r1.bind = hadoop101
a1.sources.r1.port = 44444# Channels
# 配置a1.channerls.c1的各项属性参数,缓存方式/最多缓存的Event个数/单次传输的Event个数
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100# Sinks
# sinks.k1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141
# sinks.k2
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop103
a1.sinks.k2.port = 4141# Bind
# 注意:source可以绑定多个channel,但是sink/sink group只能绑定单个channel
# r1->c1->g1
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1

2)flume2.properties

# flume2:此配置用于将来自指定Avro端口的数据输出到控制台
# a2:Avro Source->Memory Channel->Logger Sink# Agent
a2.sources = r1
a2.channels = c1
a2.sinks = k1# Sources
# a2.sources.r1
a2.sources.r1.type = avro
# 设置监听本地IP
a2.sources.r1.bind = 0.0.0.0
# 设置监听端口号
a2.sources.r1.port = 4141# Channels
# a2.channels.c1
# 使用内存作为缓存/最多缓存的Event个数/单次传输的Event个数
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100# Sinks
# 运行时设置参数 -Dflume.root.logger=INFO,console 即输出到控制台实时显示
a2.sinks.k1.type = logger
# 设置Event的Body中写入log的最大字节数(默认值为16)
a2.sinks.k1.maxBytesToLog = 256# Bind
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

3)flume3.properties

# flume3:此配置用于将来自指定Avro端口的数据输出到控制台
# a3:Avro Source->Memory Channel->Logger Sink# Agent
a3.sources = r1
a3.channels = c1
a3.sinks = k1# Sources
# a3.sources.r1
a3.sources.r1.type = avro
# 设置监听本地IP
a3.sources.r1.bind = 0.0.0.0
# 设置监听端口号
a3.sources.r1.port = 4141# Channels
# a3.channels.c1
# 使用内存作为缓存/最多缓存的Event个数/单次传输的Event个数
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100# Sinks
# 运行时设置参数 -Dflume.root.logger=INFO,console 即输出到控制台实时显示
a3.sinks.k1.type = logger
# 设置Event的Body中写入log的最大字节数(默认值为16)
a3.sinks.k1.maxBytesToLog = 256# Bind
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

4)启动命令

Flume Agent a1至a3分别运行在主机hadoop101、hadoop102、hadoop103上

./bin/flume-ng agent -n a1 -c conf -f flume1.properties
./bin/flume-ng agent -n a2 -c conf -f flume2.properties -Dflume.root.logger=INFO,console
./bin/flume-ng agent -n a3 -c conf -f flume3.properties -Dflume.root.logger=INFO,console

5)实现功能

  • Aent a1将指定端口的监听数据输出到a2或者a3的控制台

  • 当Event从Channel中传输给Sink Group之前,首先会根据配置Failover sink processor优先级表尝试将此Event发送给优先级最高的可用Sink,如果成功则继续处理下一个Event。如果在发送过程中,当前Sink宕机,则将其加入黑名单,一定时间内不再尝试将Event发往此Sink,并且退避时间呈指数增长,直到最大退避时间maxpenalty,以此来实现Sink的故障转移


End~

这篇关于Flume之使用Failover Sink Processor实现sink故障转移的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906135

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函