有点意思!腾讯 ARC Lab 最新发布的MiraData数据集,用于长视频生成,从这些方面做了clip分层描述……

本文主要是介绍有点意思!腾讯 ARC Lab 最新发布的MiraData数据集,用于长视频生成,从这些方面做了clip分层描述……,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近小编网上冲浪时,被腾讯 PCG ARC Lab 新开源的文本-视频数据集——MiraData 吸引了目光。

图片

这个数据集有多新?Readme在一天前刚更新完的那种,而且数据集有一大特点,是专门为长视频生成任务设计的大规模视频数据集,不仅提供了时长更长的数据,还从视频主体、背景、风格等不同维度进行了非常详细的文本“分层”描述,关注视频生成的小伙伴不容错过!相信一定能给你启发,赶紧和小编一睹为快。

MiraData项目地址:https://github.com/mira-space/MiraData

一、数据集概览

视频数据集在sora等视频生成大模型中发挥着至关重要的作用。然而,现有的文本-视频数据集在处理长视频序列捕获镜头过渡方面往往存在不足。为了解决这些限制,腾讯 PCG ARC Lab 研究人员引入了MiraDataMi ni-So ra Data),这是一个专门为长视频生成任务设计的大规模视频数据集。

(MiraData 官方Demo Video截图,来源:https://www.youtube.com/watch?v=3G0p7Jo3GYM)

 MiraData 的主要特点

1. 长视频时长:与以前的数据集不同,以前的数据集视频剪辑通常非常短(通常小于 6 秒),MiraData 专注于时长从 1 到 2 分钟不等未剪辑视频片段。这种延长的持续时间允许对视频内容进行更全面的建模。

2. 结构化描述:MiraData 中的每个视频都附有结构化描述。这些标题从不同角度提供了详细描述,增强了数据集的丰富性。描述平均长度为349字,保证了视频内容的全面呈现。

数据集构成

在这次初始发布的版本中,MiraData 包含 57,803 个视频片段,总时长 1,754 小时,主要提供游戏城市/风景探索两个场景。clip数量和视频时长如下所示:

图片

2种场景内容

● 游戏场景:包含了丰富的游戏体验相关视频;

● 城市或自然景观场景:通过视频捕捉了多样的城市风貌和自然美景。

6种类型的描述

MiraData 中的每个视频都附有结构化描述,从以下6种不同角度进行了详细地描述,增强了数据集的丰富性:

● 主体描述(Main Object Description):描述视频中的主要目标或主体,包括它们在整个视频中的属性、动作、位置和运动。

● 背景(Background):提供有关环境或场景的信息,包括物体、地点、天气和时间。

● 风格(Style):涵盖艺术风格、视觉和摄影方面,如写实、赛博朋克、电影风格。

● 摄像机运动(Camera Movement):详细说明摄像机的平移、变焦或其他运动。

● 简短描述(Short Caption):一段简洁的摘要,描述视频的精髓,使用Panda-70M字幕模型生成。

● 密集描述(Dense Caption):一个更详尽和详细的、总结了上述五种类型的描述。

举个“栗子”

看1个官方提供的例子,就明白了,比如这个游戏视频

(开头画面冲击力较强,注意谨慎观看)

描述内容有:

主体描述

从玩家的视角出发,最初与一个对手搏斗,这一点可以从机械部件和玩家手部的特写镜头中得到证实。随后,焦点转移到一位老年女性身上,她最初表现出攻击性或防御性,高举着铲子,好像随时准备出击。接着她转身,带领玩家绕到一个木制结构的侧面,那可能是她的家。随着时间的推移,她的态度变得柔和,看起来像是在和玩家交谈,因为她放下了手中的铲子,姿态变得更加放松。

背景描述

背景描绘了郁郁葱葱的乡村环境,有一座木屋或棚屋,周围环绕着绿色植物、岩石和红色花朵。环境具有自然主义的感觉,晴朗的天空和日光表明这是白天的环境。背景中没有可见的其他人物或移动元素,这表明这是一个虽然与世隔绝但平静的地点。

风格描述

视觉风格是现实主义的,具有详细的角色模型、自然光照以及高度的环境细节,共同营造出一个沉浸式且令人信服的乡村环境,适合于电子游戏的背景设定。

镜头描述

相机视角在整个序列中始终与第一人称视点保持一致。初始画面表明了一场动态的斗争,伴随着快速的动作,而随后的画面则显示了玩家与女性互动时更为稳定的相机。镜头跟随女人移动,将她保持为焦点,并且拍摄角度会随着玩家视角的变化而变化,以保持女人在视野中,特别是当她移动和转身时。

简短描述

一个电子游戏角色站在房子前面。

密集描述

该视频序列展示了视频游戏角色在乡村环境中与不可玩角色 (NPC) 互动的第一人称视角。最初,玩家角色似乎正在与敌人或生物搏斗,如特写斗争和火花或余烬的存在所示。场景切换到玩家角色站在一位老年妇女面前,她以防御或威胁的姿势挥舞着铲子。该女子的表情和姿势表明她对玩家持警惕或对抗态度。随着视频的进展,这名女子似乎稍微放松了一点,放下了铲子并与玩家交谈,这一点从她不断变化的面部表情和肢体语言可以看出。

二、数据采集与标注

为了收集MiraData,研究团队首先手动选择不同场景下的YouTube频道。然后,使用PySceneDetect下载并分割相应频道中的所有视频。之后,选择了时长在1到2分钟之间的视频片段。对于超过2分钟的视频片段,他们将其分成多个2分钟的片段。最后,使用 GPT-4V 为视频剪辑添加描述。

GPT-4V 描述

研究团队测试了现有的开源视觉LLM方法和GPT-4V,发现GPT-4V的描述在时间序列方面的语义理解上表现出更好的准确性和连贯性。它还可以更准确地描述主要主体和背景物体,减少物体遗漏和幻觉问题。因此,他们使用GPT-4V来生成密集描述主体描述背景描述镜头描述风格描述

Panda-70M 描述

为了平衡标注成本和描述准确性,他们为每个视频统一采样 8 帧,并将它们排列成一张大图像的 2x4 网格。然后,使用Panda-70M的描述模型为每个视频添加一句话描述,作为主要内容的提示,并将其输入到他们的微调 prompt 中。

通过将微调的提示和 2x4 大图像输入 GPT-4V,他们可以在一轮对话中高效地输出多个维度的描述。具体提示内容可以在caption_gpt4v.py中找到,欢迎大家贡献更多优质的文字-视频数据。

caption_gpt4v.py链接:https://github.com/mira-space/MiraData/blob/main/caption_gpt4v.py

三、统计

数据集信息统计如下:

图片

密集字幕的总文本长度统计

图片

六种类型字幕的总文本长度统计

简短描述词云

图片

密集描述的词云

四、数据集下载

作者提供的描述元文件,除了上述6种维度描述外,还提供了YouTube视频ID等相关信息:

● 元文件字段:

· index : 视频片段索引,由以下部分组成{download_idx}_{video_id}-{clip_id}

· video_id : YouTube 视频 ID

· start_frame : YouTube 视频的剪辑开始帧

· end_frame : YouTube 视频的剪辑结束帧

· main_object_caption:视频中主体描述

· background_caption : 视频背景描述

· style_caption:视频风格描述

· camera_caption : 镜头描述

· Short_caption:简短描述

· dend_caption:密集描述

· fps:用于提取帧的视频帧率

*你可以使用 start_frame/fps 或 end_frame/fps 获取开始和结束时间戳

另外,作者提供了视频下载并分割的脚本:

python download_data.py --meta_csv miradata_v0.csv --video_start_id 0 --video_end_id 10631 --raw_video_save_dir miradata/raw_video --clip_video_save_dir miradata/clip_video

其中--video_start_id和表示要下载的元文件的--video_end_id开始值和结束值。游戏场景范围为0至7416,城市/风景探索范围为7417至10631。download_idxindex

更多数据集,请访问OpenDataLab:https://opendatalab.org.cn/

这篇关于有点意思!腾讯 ARC Lab 最新发布的MiraData数据集,用于长视频生成,从这些方面做了clip分层描述……的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905912

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Vue3视频播放组件 vue3-video-play使用方式

《Vue3视频播放组件vue3-video-play使用方式》vue3-video-play是Vue3的视频播放组件,基于原生video标签开发,支持MP4和HLS流,提供全局/局部引入方式,可监听... 目录一、安装二、全局引入三、局部引入四、基本使用五、事件监听六、播放 HLS 流七、更多功能总结在 v

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单